Abstract

Thermal barrier coating (TBC) has been used widely on turbine blades to provide temperature and oxidation protection. With the turbine inlet temperature continuously increasing, TBCs have become more likely to oxide spallation, leading to premature failure of blade metal substrates. Thus, It is necessary to accurately evaluate the in-service reliability of TBCs for blade life assessment and engine operation safety. Nowadays, it is common to dynamically record aero-engine operating and performance data, called dynamic covariate data, which provides periodic snapshots for obtaining reliability information of engine components. Nevertheless, existing TBC life prediction models that pay adequate attention to dynamic covariate information are rare. This paper focuses on using limited failure samples with associated dynamic covariate data to make in-service reliability assessments of TBCs through a proposed cumulative damage index model. For the demonstration of the proposed approach, an integrated TBC life simulation approach has been introduced, which comprises engine performance, blade thermal, TBC damage, and damage accumulation models. The case study shows that the proposed cumulative damage index model-based method provides more stable and accurate results than the traditional statistical method based on failure-time data.

References

1.
Gandy
,
D. W.
, and
Scheibel
,
J.
,
2003
, “
Life Management System for Advanced F Class Gas Turbines
,”
EPRI
,
Palo Alto, CA
.
2.
Viswanathan
,
R.
,
2002
, “
Blade Life Management: Coating Systems
,”
EPRI
,
Palo Alto, CA
.
3.
Okoh
,
C.
,
Roy
,
R.
,
Mehnen
,
J.
, and
Redding
,
L.
,
2014
, “
Overview of Remaining Useful Life Prediction Techniques in Through-Life Engineering Services
,”
Procedia CIRP
,
16
, pp.
158
163
.10.1016/j.procir.2014.02.006
4.
Hu
,
X.
,
Shi
,
D.
,
Pang
,
X.
, and
Yang
,
X.
,
2018
, “
Thermal Barrier Coating Life Prediction Method for a Turbine Blade
,”
J. Aerodyn.
,
33
(
1
), pp.
48
53
.10.13224/j.cnki.jasp.2018.01.006
5.
S, Liu W
,
A.
,
Zhao
,
S.
, and
Yang
,
Y.
,
2015
, “
Research Methods of Failure Mechanism and Life Prediction of Thermal Barrier Coatings
,”
Dongfang Steam Turbine
, (
4
), pp.
1
5
.10.13808/j.cnki.issn1674-9987.2015.04.001
6.
Song
,
J.
,
Li
,
S.
,
Qi
,
H.
,
Shi
,
D.
, and
Yang
,
X.
,
2019
, “
Research on Failure Behavior and Life Prediction of Thermal Barrier Coatings
,”
Aviation Manuf. Technol.
,
62
(
3
), pp.
34
40
.10.16080/j.issn1671-833x.2019.03.034
7.
Beck
,
T.
,
Herzog
,
R.
,
Trunova
,
O.
,
Offermann
,
M.
,
Steinbrech
,
R. W.
, and
Singheiser
,
L.
,
2008
, “
Damage Mechanisms and Lifetime Behavior of Plasma-Sprayed Thermal Barrier Coating Systems for Gas Turbines—Part II: Modeling
,”
Surf. Coat. Technol.
,
202
(
24
), pp.
5901
5908
.10.1016/j.surfcoat.2008.06.132
8.
Zhang
,
B. C.
,
Chen
,
K.
,
Baddour
,
N.
, and
Patnaik
,
P. C.
,
2019
, “
Failure and Life Evaluation of EB-PVD Thermal Barrier Coatings Using Temperature-Process-Dependent Model Parameters
,”
Corros. Sci.
,
156
, pp.
1
9
.10.1016/j.corsci.2019.04.020
9.
Jonnalagadda
,
K. P.
,
Eriksson
,
R.
,
Li
,
X.-H.
, and
Peng
,
R. L.
,
2019
, “
Fatigue Life Prediction of Thermal Barrier Coatings Using a Simplified Crack Growth Model
,”
J. Eur. Ceram. Soc.
,
39
(
5
), pp.
1869
1876
.10.1016/j.jeurceramsoc.2018.12.046
10.
Song
,
H.
,
Lee
,
J.-M.
,
Kim
,
Y.
,
Yang
,
S.
,
Park
,
S.
,
Koo
,
J.-M.
, and
Seok
,
C.-S.
,
2019
, “
Life Prediction Method for Thermal Barrier Coating of High-Efficiency Eco-Friendly Combined Cycle Power Plant
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
6
(
2
), pp.
329
337
.10.1007/s40684-019-00066-9
11.
Yun
,
J.
,
Wee
,
S.
,
Park
,
S.
,
Lee
,
J.-M.
,
Song
,
H.
, and
Seok
,
C.-S.
,
2020
, “
Method for Predicting Thermal Fatigue Life of Thermal Barrier Coatings Using TGO Interface Stress
,”
Int. J. Precis. Eng. Manuf.
,
21
(
9
), pp.
1677
1685
.10.1007/s12541-020-00363-3
12.
He
,
M. Y.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2003
, “
Simulation of Stresses and Delamination in a Plasma-Sprayed Thermal Barrier System Upon Thermal Cycling
,”
Mater. Sci. Eng.: A
,
345
(
1–2
), pp.
172
178
.10.1016/S0921-5093(02)00458-6
13.
Meier
,
S. M.
,
Nissley
,
D. M.
,
Sheffler
,
K. D.
, and
Cruse
,
T. A.
,
1992
, “
Thermal Barrier Coating Life Prediction Model Development
,”
ASME J. Eng. Gas Turbines Power
,
114
(
2
), pp.
258
263
.10.1115/1.2906581
14.
Jonnalagadda
,
K. P.
,
Eriksson
,
R.
,
Li
,
X.-H.
, and
Peng
,
R. L.
,
2019
, “
Thermal Barrier Coatings: Life Model Development and Validation
,”
Surf. Coat. Technol.
,
362
, pp.
293
301
.10.1016/j.surfcoat.2019.01.117
15.
Guan
,
P.
,
Ai
,
Y.
,
Fei
,
C.
, and
Yao
,
Y.
,
2019
, “
Thermal Fatigue Life Prediction of Thermal Barrier Coat on Nozzle Guide Vane Via Master-Slave Model
,”
Appl. Sci.-Basel
,
9
(
20
), p.
4357
.10.3390/app9204357
16.
Bargraser
,
C.
,
Mohan
,
P.
,
Lee
,
K.
,
Yang
,
B.
,
Suk
,
J.
,
Choe
,
S.
, and
Sohn
,
Y. H.
,
2012
, “
Life Approximation of Thermal Barrier Coatings Via Quantitative Microstructural Analysis
,”
Mater. Sci. Eng. A
,
549
, pp.
76
81
.10.1016/j.msea.2012.04.008
17.
Voigt
,
M.
,
MüCke
,
R.
,
Vogeler
,
K.
, and
Oevermann
,
M.
,
2004
, “
Probabilistic Lifetime Analysis for Turbine Blades Based on a Combined Direct Monte Carlo and Response Surface Approach
,”
ASME
Paper No. GT2004-53439.10.1115/GT2004-53439
18.
Kountras
,
A.
,
2004
,
Probabilistic Analysis of Turbine Blade Durability
,
Massachusetts Institute of Technology
, Cambridge, MA.
19.
Wu
,
X. J.
,
Patnaik
,
P. C.
,
Liao
,
M.
, and
Chen
,
W. R.
,
2003
, “
A Statistical Assessment of the Damage State in Plasma-Sprayed Thermal Barrier Coating
,”
ASME
Paper No. GT2003-38790.10.1115/GT2003-38790
20.
Cao
,
H.
,
Cao
,
P.
,
Kang
,
L.
, and
Gu
,
Y.
,
2017
, “
Failure Analysis and Damage Development Trend Research of Aero Engine High-pressure Turbine Blades
,”
J. Civ. Aviat. Univ. China
,
35
(
3
), pp.
13
16 + 26
.https://www.cauc.edu.cn/jweb_cauc/CN/Y2017/V35/I3/13
21.
Giesecke
,
D.
,
Wehking
,
M.
,
Friedrichs
,
J.
, and
Binner
,
M.
,
2015
, “
A Method for Forecasting the Condition of Several HPT Parts by Using Bayesian Belief Networks
,”
ASME
Paper No. GT2015-43110.10.1115/GT2015-43110
22.
Quintanar-Gago
,
D. A.
,
Nelson
,
P. F.
,
Díaz-Sánchez
,
Á.
, and
Boldrick
,
M. S.
,
2021
, “
Assessment of Steam Turbine Blade Failure and Damage Mechanisms Using a Bayesian Network
,”
Reliab. Eng. Syst. Saf.
,
207
, p.
107329
.10.1016/j.ress.2020.107329
23.
Abdul Ghafir
,
M. F.
,
Li
,
Y. G.
, and
Wang
,
L.
,
2014
, “
Creep Life Prediction for Aero Gas Turbine Hot Section Component Using Artificial Neural Networks
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031504
.10.1115/1.4025725
24.
Sanaye
,
S.
, and
Hosseini
,
S.
,
2020
, “
Prediction of Blade Life Cycle for an Industrial Gas Turbine at Off-Design Conditions by Applying Thermodynamics, Turbo-Machinery and Artificial Neural Network Models
,”
Energy Rep.
,
6
, pp.
1268
1285
.10.1016/j.egyr.2020.05.008
25.
Jordan
,
E. H.
,
Sohn
,
Y. H.
,
Xie
,
W.
,
Gell
,
M.
,
Xie
,
L.
,
Tu
,
F.
,
Pattipati
,
K. R.
, and
Willett
,
P.
,
2001
, “
Residual Stress Measurement of Thermal Barrier Coatings Using Laser Fluorescence Technique and Their Life Prediction
,”
IEEE Autotestcon Proceedings. IEEE Systems Readiness Technology Conference (Cat. No.01CH37237)
,
IEEE
,
Valley Forge, PA
, Aug. 20–23, pp.
593
603
. 10.1109/AUTEST.2001.949444
26.
Wen
,
M.
,
Jordan
,
E. H.
, and
Gell
,
M.
,
2006
, “
Remaining Life Prediction of Thermal Barrier Coatings Based on Photoluminescence Piezospectroscopy Measurements
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
610
616
.10.1115/1.2135820
27.
Stamatis
,
A.
,
Mathioudakis
,
K.
,
Ruiz
,
J.
, and
Curnock
,
B.
,
2001
, “
Real Time Engine Model Implementation for Adaptive Control and Performance Monitoring of Large Civil Turbofans
,”
ASME
Paper No. 2001-GT-0362.10.1115/2001-GT-0362
28.
Zhou
,
C.
,
Wang
,
N.
, and
Xu
,
H.
,
2007
, “
Comparison of Thermal Cycling Behavior of Plasma-Sprayed Nanostructured and Traditional Thermal Barrier Coatings
,”
Mater. Sci. Eng.: A
,
452–453
, pp.
569
574
.10.1016/j.msea.2006.11.027
29.
Ogiriki
,
E. A.
,
Li
,
Y. G.
, and
Nikolaidis
,
T.
,
2016
, “
Prediction and Analysis of Impact of Thermal Barrier Coating Oxidation on Gas Turbine Creep Life
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
121501
.10.1115/1.4034020
30.
Miller
,
R. A.
,
1987
, “
Progress Toward Life Modeling of Thermal Barrier Coatings for Aircraft Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
109
(
4
), pp.
448
451
.10.1115/1.3240062
31.
Hong
,
Y.
,
Duan
,
Y.
,
Meeker
,
W. Q.
,
Stanley
,
D. L.
, and
Gu
,
X.
,
2015
, “
Statistical Methods for Degradation Data With Dynamic Covariates Information and an Application to Outdoor Weathering Data
,”
Technometrics
,
57
(
2
), pp.
180
193
.10.1080/00401706.2014.915891
32.
Hong
,
Y.
, and
Meeker
,
W. Q.
,
2013
, “
Field-Failure Predictions Based on Failure-Time Data With Dynamic Covariate Information
,”
Technometrics
,
55
(
2
), pp.
135
149
.10.1080/00401706.2013.765324
33.
Bunker
,
R. S.
,
2000
, “
Effect of Partial Coating Blockage on Film Cooling Effectiveness
,”
ASME
Paper No. 2000-GT-0244.10.1115/2000-GT-0244
34.
Elsayed
,
A. M.
,
Owis
,
F. M.
, and
Abdel Rahman
,
M. M.
,
2013
, “
Film Cooling Optimization Using Numerical Computation of the Compressible Viscous Flow Equations and Simplex Algorithm
,”
Int. J. Aerosp. Eng.
,
2013
, pp.
1
24
.10.1155/2013/859465
You do not currently have access to this content.