Abstract

This paper presents tests of an antisurge system based on pressure derivatives. The control algorithm was proven to work on different machines and with different unstable flow phenomena. Compressors are known to be affected by unstable flow conditions appearing at low mass flowrate conditions. The best known and most dangerous phenomenon is surge, which is a global instability affecting the entire impeller and regions upstream and downstream from it. A list of identified local phenomena includes among others: impeller rotating stall, diffuser rotating stall, and inlet recirculation. All have a specific pressure signature that is used for early identification. The method presented in this paper is based on a control parameter named the rate of derivative fluctuation (RDF). This approach involves a simple measure of flow instability that is universal and reacts to flow disturbances. RDF has been already confirmed to identify inlet recirculation and surge. The aim of this study is to conduct real-time tests of an antisurge system, implementing the RDF algorithm triggering the safety valve opening. The study confirmed the optimal position of the monitoring point. The results showed that the RDF is indeed sensitive to different types of flow instabilities appearing in different impellers, and that it provides efficient flow stability monitoring.

References

1.
Kiran
,
P.
, and
Chakraborty
,
S.
,
2016
,
Centrifugal Air Compressor Market Report
,
Global Market Insights, Inc
.,
Selbyville, DE
.
2.
Di Febo
,
M.
, and
Pasquale
,
P.
,
2019
,
Compressor Operation: Continuous Monitoring of Possible Failure Modes
,
Turbomachinery International
,
South Iselin, NJ
.
3.
de Jager
,
B.
,
1995
, “
Rotating Stall and Surge Control: A Survey, in Decision and Control
,”
Proceedings of the Conference on 34th IEEE
, New Orleans, LA, Dec. 13-15, pp.
1857
1862
.10.1109/CDC.1995.480612
4.
Willems
,
F.
,
Heemels
,
M.
, and
de Jager
,
B.
,
1999
, “
Positive Feedback Stabilization of Compressor Surge
,”
Proceedings of the 38th IEEE Conference on Decision and Control
, Phoenix, AZ, Dec. 7–10, pp.
311
318
.10.1109/CDC.1999.827773
5.
Gravdahl
,
J. T.
, and
Egeland
,
O.
,
2011
,
Compressor Surge and Rotating Stall: Modeling and Control
,
Springer Publishing Company
,
London, UK
.
6.
Botros
,
K. K.
, and
Henderson
,
J. F.
,
1994
, “
Developments in Centrifugal Compressor Surge Control—A Technology Assessment
,”
ASME J. Turbomach.
,
116
(
2
), pp.
240
249
.10.1115/1.2928358
7.
Fink
,
D.
,
Cumpsty
,
N.
, and
Greitzer
,
E.
,
1992
, “
Surge Dynamics in a Free-Spool Centrifugal Compressor System
,”
ASME J. Turbomach.
,
114
(
2
), pp.
321
332
.10.1115/1.2929146
8.
Galindo
,
J.
,
Serrano
,
J. R.
,
Guardiola
,
C.
, and
Cervelló
,
C.
,
2006
, “
Surge Limit Definition in a Specific Test Bench for the Characterization of Automotive Turbochargers
,”
Exp. Therm. Fluid Sci.
,
30
(
5
), pp.
449
462
.10.1016/j.expthermflusci.2005.06.002
9.
Hunziker
,
R.
,
Dickmann
,
H.-P.
, and
Emmrich
,
R.
,
2001
, “
Numerical and Experimental Investigation of a Centrifugal Compressor With an Inducer Casing Bleed System
,”
Proc. Inst. Mech. Eng., Part A
,
215
(
6
), pp.
783
791
.10.1243/0957650011538910
10.
Gorrell
,
S. E.
, and
Russler
,
P. M.
,
1994
, “
Stall Inception in a High-Speed Low Aspect Ratio Fan Including the Effects of Casing Treatments
,”
ASME
Paper No. GT-94-322.10.1115/GT-94-322
11.
Zheng
,
X.
,
Zhang
,
Y.
,
Yang
,
M.
,
Bamba
,
T.
, and
Tamaki
,
H.
,
2013
, “
Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetric Flow Control-Part II: Non-Axisymmetrical Self-Recirculation Casing Treatment
,”
ASME J. Turbomach.
,
135
(
2
), p.
021007
.10.1115/1.4006637
12.
Galindo
,
J.
,
Tiseira
,
A.
,
Navarro
,
R.
,
Tarí
,
D.
, and
Meano
,
C. M.
,
2017
, “
Effect of the Inlet Geometry on Performance, Surge Margin and Noise Emission of an Automotive Turbocharger Compressor
,”
Appl. Therm. Eng.
,
110
, pp.
875
882
.10.1016/j.applthermaleng.2016.08.099
13.
Simon
,
J. S.
,
Valavani
,
L.
,
Epstein
,
A. H.
, and
Greitzer
,
E. M.
,
1993
, “
Evaluation of Approaches to Active Compressor Surge Stabilization
,”
ASME J. Turbomach.
,
115
(
1
), pp.
57
67
.10.1115/1.2929218
14.
Gravdahl
,
J. T.
,
1998
,
Modeling and Control of Surge and Rotating Stall in Compressors
,
Department of Engineering Cybernetics, Norwegian Univ. of Science and Technology
,
Norway
.
15.
Gravdahl
,
J. T.
, and
Egeland
,
O.
,
1999
, “
Centrifugal Compressor Surge and Speed Control
,”
IEEE Trans. Control Syst. Technol.
,
7
(
5
), pp.
567
579
.10.1109/87.784420
16.
Willems
,
F.
, and
Jager
,
B. D.
,
1998
, “
Active Compressor Surge Control Using a One-Sided Controlled Bleed/Recycle Valve
,”
Proceedings of the 37th IEEE Conference on Decision & Control
, Tampa, FL, Dec. 18, pp.
2546
2551
.10.1109/CDC.1998.757834
17.
Semlitsch
,
B.
, and
Mihăescu
,
M.
,
2016
, “
Flow Phenomena Leading to Surge in a Centrifugal Compressor
,”
Energy
,
103
, pp.
572
587
.10.1016/j.energy.2016.03.032
18.
Liśkiewicz
,
G.
,
Horodko
,
L.
,
Stickland
,
M.
, and
Kryłłowicz
,
W.
,
2014
, “
Identification of Phenomena Preceding Blower Surge by Means of Pressure Spectral Maps
,”
Exp. Therm. Fluid Sci.
,
54
, pp.
267
278
.10.1016/j.expthermflusci.2014.01.002
19.
Tamaki
,
H.
,
2009
, “
Experimental Study on Surge Inception in a Centrifugal Compressor
,”
Int. J. Fluid Mach. Syst.
,
2
(
4
), pp.
409
417
.10.5293/IJFMS.2009.2.4.409
20.
Xue
,
X.
, and
Wang
,
T.
,
2019
, “
Stall Recognition for Centrifugal Compressors During Speed Transients
,”
Appl. Therm. Eng.
,
153
, pp.
104
112
.10.1016/j.applthermaleng.2019.02.027
21.
Gu
,
C.
,
Yamaguchi
,
K.
,
Nagashima
,
T.
, and
Higashimori
,
H.
,
2007
, “
Observation of Centrifugal Compressor Stall and Surge in Phase Portraits of Pressure Time Traces at Impeller and Diffuser Wall
,”
ASME J. Fluids Eng.
,
129
(
6
), p.
773
.10.1115/1.2734249
22.
Garcia
,
D.
,
Stickland
,
M.
, and
Liśkiewicz
,
G.
,
2015
, “
Dynamical System Analysis of Unstable Flow Phenomena in Centrifugal Blower
,”
Open Eng.
,
5
(
1
), pp.
332
342
.10.1515/eng-2015-0036
23.
Komatsubara
,
Y.
, and
Mizuki
,
S.
,
1997
, “
Dynamical System Analysis of Unsteady Phenomena in Centrifugal Compressor
,”
J. Therm. Sci.
,
6
(
1
), pp.
14
20
.10.1007/s11630-997-0011-8
24.
Amanifard
,
N.
,
Nariman-Zadeh
,
N.
,
Farahani
,
M. H.
, and
Khalkhali
,
A.
,
2008
, “
Modelling of Multiple Short-Length-Scale Stall Cells in an Axial Compressor Using Evolved GMDH Neural Networks
,”
Energy Convers. Manage.
,
49
(
10
), pp.
2588
2594
.10.1016/j.enconman.2008.05.025
25.
Mutou
,
A.
,
Mizuki
,
S.
, and
Komatsubara
,
Y.
,
1998
, “
Behavior of Attractors During Surge in Centrifugal Compression System
,”
ASME
Paper No. 98-GT-301.10.1115/98-GT-301
26.
Hagino
,
N.
,
Uda
,
K.
, and
Kashiwabara
,
Y.
,
2003
, “
Prediction and Active Control of Surge Inception of a Centrifugal Compressor
,”
International Gas Turbine Congress
, Tokyo, Japan, Nov. 2–7.https://nippon.zaidan.info/seikabutsu/2003/00916/pdf/igtc2003tokyo_ts038.pdf
27.
Liśkiewicz
,
G.
,
2019
, “
Efficient and Reliable Surge Prevention Algorithm for Centrifugal Compressor
,”
Aircr. Eng. and Aerosp. Technol.
, 92(1), pp.
47
59
.10.1108/AEAT-11-2018-0284
28.
Packard
,
N. H.
,
Crutchfield
,
J. P.
,
Farmer
,
J. D.
, and
Shaw
,
R. S.
,
1980
, “
Geometry From a Time Series
,”
Phys. Rev. Lett.
,
45
(
9
), pp.
712
716
.10.1103/PhysRevLett.45.712
29.
Kryłłowicz
,
W.
,
2013
, “Teoria i praktyka modernizacji sprężarek promieniowych. Wydawnictwo Politechniki Łódzkiej,” Łódź University of Technology Publishing House.
30.
Harley
,
P.
,
Spence
,
S.
,
Filsinger
,
D.
, Dietrich, M., and Early, J.,
2014
, “
Meanline Modeling of Inlet Recirculation in Automotive Turbocharger Centrifugal Compressors
,”
ASME
Paper No. GT2014-25853.10.1115/GT2014-25853
31.
Abdelhamid
,
A. N.
,
Colwill
,
W. H.
, and
Barrows
,
J. F.
,
1979
, “
Experimental Investigation of Unsteady Phenomena in Vaneless Radial Diffusers
,”
ASME J. Eng. Gas Turbines Power
,
101
(
1
), pp.
52
59
.10.1115/1.3446458
32.
KäMmer
,
N.
, and
Rautenberg
,
M.
,
1986
, “
A Distinction Between Different Types of Stall in a Centrifugal Compressor Stage
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
83
92
.10.1115/1.3239890
33.
Liśkiewicz
,
G.
,
2014
,
Numerical Model of the Flow Phenomena Preceding Surge in the Centrifugal Blower and Assessment of Its Applicability in Designing Anti-Surge Devices
,
Łódź University of Technology and University of Strathclyde
,
Glasgow, UK
.
34.
Liśkiewicz
,
G.
,
Sobczak
,
K.
,
Stickland
,
M.
, and
Kryłłowicz
,
W.
,
2018
, “
Numerical Study of Off-Design Centrifugal Compressor Operation and Flow Phenomena Preceding Surge
,”
ASME
Paper No. GT2018-77013.10.1115/GT2018-77013
35.
Schreiber
,
C.
,
2018
,
Inlet Recirculation in Radial Compressors
,
University of Cambridge
,
Cambridge, UK
.
36.
Gülich
,
J. F.
,
2014
,
Centrifugal Pumps
, Vol.
53
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg, Germany
.
37.
Zheng
,
X.
, and
Liu
,
A.
,
2015
, “
Phenomenon and Mechanism of Two-Regime-Surge in a Centrifugal Compressor
,”
ASME J. Turbomach.
,
137
(
8
), p. 081007.10.1115/1.4029547
38.
Fatsis
,
A.
,
Pierret
,
S.
, and
Van den Braembussche
,
R.
,
1997
, “
Three-Dimensional Unsteady Flow and Forces in Centrifugal Impellers With Circumferential Distortion of the Outlet Static Pressure
,”
ASME. J. Turbomach.
, 119(1), pp.
94
102
. 10.1115/1.2841015
You do not currently have access to this content.