Abstract

New ignition delay time measurements of natural gas mixtures enriched with small amounts of n-hexane and n-heptane were performed in a rapid compression machine to interpret the sensitization effect of heavier hydrocarbons on auto-ignition at gas-turbine relevant conditions. The experimental data of natural gas mixtures containing alkanes from methane to n-heptane were carried out over a wide range of temperatures (840–1050 K), pressures (20–30 bar), and equivalence ratios (φ = 0.5 and 1.5). The experiments were complimented with numerical simulations using a detailed kinetic model developed to investigate the effect of n-hexane and n-heptane additions. Model predictions show that the addition of even small amounts (1–2%) of n-hexane and n-heptane can lead to an increase in reactivity by ∼40–60 ms at compressed temperature (TC) = 700 K. The ignition delay time (IDT) of these mixtures decreases rapidly with an increase in concentration of up to 7.5% but becomes almost independent of the C6/C7 concentration beyond 10%. This sensitization effect of C6 and C7 is also found to be more pronounced in the temperature range 700–900 K compared to that at higher temperatures (>900 K). The reason is attributed to the dependence of IDT primarily on H2O2(+M) ↔ 2ȮH(+M) at higher temperatures while the fuel-dependent reactions such as H-atom abstraction, RȮ2 dissociation, or Q˙OOH + O2 reactions are less important compared to 700–900 K, where they are very important.

References

1.
Burnes
,
D.
, and
Camou
,
A.
,
2019
, “
Impact of Fuel Composition on Gas Turbine Engine Performance
,”
ASME J. Eng. Gas Turbines Power
,
141
, p.
101006
.10.1115/1.4044238
2.
International Energy Agency
,
2021
, “The Role of Gas in Today's Energy Transitions,” World Energy Outlook Special Report, International Energy Agency, Paris, France, accessed Mar. 24, 2021, https://www.iea.org/publications/roleofgas/
3.
Faramawy
,
S.
,
Zaki
,
T.
, and
Sakr
,
A. A. E.
,
2016
, “
Natural Gas Origin, Composition, and Processing: A Review
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
34
54
.10.1016/j.jngse.2016.06.030
4.
Spadaccini
,
L. J.
, and
Colket
,
M. B.
,
1994
, “
Ignition Delay Characteristics of Methane Fuels
,”
Prog. Energy Combust. Sci.
,
20
(
5
), pp.
431
460
.10.1016/0360-1285(94)90011-6
5.
Melvin
,
A.
,
1966
, “
Spontaneous Ignition of Methane-Air Mixtures at High Pressure I-the Ignition Delay Preceding Explosion
,”
Combust. Flame
,
10
(
2
), pp.
120
128
.10.1016/0010-2180(66)90057-5
6.
Dagaut
,
P.
,
Boettner
,
J. C.
, and
Cathonnet
,
M.
,
1991
, “
Methane Oxidation: Experimental and Kinetic Modeling Study
,”
Combust. Sci. Technol.
,
77
(
1–3
), pp.
127
148
.10.1080/00102209108951723
7.
Zhukov
,
V. P.
,
Sechenov
,
V. A.
, and
Starikovskii
,
A. Y.
,
2003
, “
Spontaneous Ignition of Methane–Air Mixtures in a Wide Range of Pressures
,”
Combust. Explos. Shock Waves
,
39
(
5
), pp.
487
495
.10.1023/A:1026186231905
8.
Huang
,
J.
,
Hill
,
P. G.
,
Bushe
,
W. K.
, and
Munshi
,
S. R.
,
2004
, “
Shock-Tube Study of Methane Ignition Under Engine-Relevant Conditions: Experiments and Modeling
,”
Combust. Flame
,
136
(
1–2
), pp.
25
42
.10.1016/j.combustflame.2003.09.002
9.
Levy
,
Y.
,
Olchanski
,
E.
,
Sherbaum
,
V.
,
Erenburg
,
V.
, and
Burcat
,
A.
,
2006
, “
Shock-Tube Ignition Study of Methane in Air and Recirculating Gases Mixtures
,”
J. Propul. Power
,
22
(
3
), pp.
669
676
.10.2514/1.12511
10.
El Merhubi
,
H.
,
Kéromnès
,
A.
,
Catalano
,
G.
,
Lefort
,
B.
, and
Le Moyne
,
L.
,
2016
, “
A High Pressure Experimental and Numerical Study of Methane Ignition
,”
Fuel
,
177
, pp.
164
172
.10.1016/j.fuel.2016.03.016
11.
Lamoureux
,
N.
, and
Paillard
,
C. E.
,
2003
, “
Natural Gas Ignition Delay Times Behind Reflected Shock Waves: Application to Modelling and Safety
,”
Shock Waves
,
13
(
1
), pp.
57
68
.10.1007/s00193-003-0188-z
12.
Eubank
,
C. S.
,
Rabinowitz
,
M. J.
,
Gardiner
,
W. C.
, and
Zellner
,
R. E.
,
1981
, “
Shock-Initiated Ignition of Natural gas-Air Mixtures
,”
Symp. Combust.
,
18
(
1
), pp.
1767
1774
.10.1016/S0082-0784(81)80181-6
13.
Bourque
,
G.
,
Healy
,
D.
,
Curran
,
H.
,
Zinner
,
C.
,
Kalitan
,
D.
,
De Vries
,
J.
,
Aul
,
C.
, and
Petersen
,
E.
,
2008
, “
Ignition and Flame Speed Kinetics of Two Natural Gas Blends With High Levels of Heavier Hydrocarbons
,”
ASME
Paper No. GT2008-51344.10.1115/GT2008-51344
14.
Healy
,
D.
,
Kalitan
,
D. M.
,
Aul
,
C. J.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2010
, “
Oxidation of C1−C5 Alkane Quinternary Natural Gas Mixtures at High Pressures
,”
Energy Fuels
,
24
(
3
), pp.
1521
1528
.10.1021/ef9011005
15.
De Vries
,
J.
, and
Petersen
,
E. L.
,
2007
, “
Autoignition of Methane-Based Fuel Blends Under Gas Turbine Conditions
,”
Proc. Combust. Inst. 31 II
,
31
(
2
), pp.
3163
3171
.10.1016/j.proci.2006.07.206
16.
Ramalingam
,
A.
,
Zhang
,
K.
,
Dhongde
,
A.
,
Virnich
,
L.
,
Sankhla
,
H.
,
Curran
,
H.
, and
Heufer
,
A.
,
2017
, “
An RCM Experimental and Modeling Study on CH4 and CH4/C2H6 Oxidation at Pressures Up to 160 bar
,”
Fuel
,
206
, pp.
325
333
.10.1016/j.fuel.2017.06.005
17.
Baigmohammadi
,
M.
,
Patel
,
V.
,
Martinez
,
S.
,
Panigrahy
,
S.
,
Ramalingam
,
A.
,
Burke
,
U.
,
Somers
,
K. P.
,
Heufer
,
K. A.
,
Pekalski
,
A.
, and
Curran
,
H. J.
,
2020
, “
A Comprehensive Experimental and Simulation Study of Ignition Delay Time Characteristics of Single Fuel C1–C2 Hydrocarbons over a Wide Range of Temperatures, Pressures, Equivalence Ratios, and Dilutions
,”
Energy Fuels
,
34
(
3
), pp.
3755
3771
.10.1021/acs.energyfuels.9b04139
18.
Zellner
,
R.
,
Niemitz
,
K.
,
Warnatz
,
J.
,
Gardiner
,
W.
,
Eubank
,
C.
, and
Simmie
,
J.
,
1983
, “
Hydrocarbon Induced Acceleration of Ignition of Methane-Air Ignition
,”
Flames, Lasers and Reactive Systems
,
American Institute of Aeronautics and Astronautics
, Reston, VA, pp.
252
272
.
19.
Crossley
,
R. W.
,
Dorko
,
E. A.
,
Scheller
,
K.
, and
Burcat
,
A.
,
1972
, “
The Effect of Higher Alkanes on the Ignition of Methane-Oxygen-Argon Mixtures in Shock Waves
,”
Combust. Flame
,
19
(
3
), pp.
373
378
.10.1016/0010-2180(72)90007-7
20.
Higgin
,
R. M. R.
, and
Williams
,
A.
,
1969
, “
A Shock-Tube Investigation of the Ignition of Lean Methane and n-Butane Mixtures With Oxygen
,”
Symp. Combust
,
12
(
1
), pp.
579
590
.10.1016/S0082-0784(69)80439-X
21.
Huang
,
J.
, and
Bushe
,
W. K.
,
2006
, “
Experimental and Kinetic Study of Autoignition in Methane/Ethane/Air and Methane/Propane/Air Mixtures Under Engine-Relevant Conditions
,”
Combust. Flame
,
144
(
1–2
), pp.
74
88
.10.1016/j.combustflame.2005.06.013
22.
Petersen
,
E. L.
,
Hall
,
J. M.
,
Smith
,
S. D.
,
de Vries
,
A. R.
,
Amadio
,
J.
, and
Crofton
,
M. W.
,
2007
, “
Ignition of Lean Methane-Based Fuel Blends at Gas Turbine Pressures
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
937
944
.10.1115/1.2720543
23.
Healy
,
D.
,
Kopp
,
M. M.
,
Polley
,
N. L.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2010
, “
Methane/n-Butane Ignition Delay Measurements at High Pressure and Detailed Chemical Kinetic Simulations
,”
Energy Fuels
,
24
(
3
), pp.
1617
1627
.10.1021/ef901292j
24.
Beerer
,
D. J.
, and
McDonell
,
V. G.
,
2011
, “
An Experimental and Kinetic Study of Alkane Autoignition at High Pressures and Intermediate Temperatures
,”
Proc. Combust. Inst
,
33
(
1
), pp.
301
307
.10.1016/j.proci.2010.05.015
25.
Healy
,
D.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Kalitan
,
D. M.
,
Zinner
,
C. M.
,
Barrett
,
A. B.
,
Petersen
,
E. L.
, and
Bourque
,
G.
,
2008
, “
Methane/Ethane/Propane Mixture Oxidation at High Pressures and at High, Intermediate and Low Temperatures
,”
Combust. Flame
,
155
(
3
), pp.
441
448
.10.1016/j.combustflame.2008.07.003
26.
Vallabhuni
,
S. K.
,
Lele
,
A. D.
,
Patel
,
V.
,
Lucassen
,
A.
,
Moshammer
,
K.
,
AlAbbad
,
M.
,
Farooq
,
A.
, and
Fernandes
,
R. X.
,
2018
, “
Autoignition Studies of Liquefied Natural Gas (LNG) in a Shock Tube and a Rapid Compression Machine
,”
Fuel
,
232
, pp.
423
430
.10.1016/j.fuel.2018.04.168
27.
Affleck
,
W. S.
, and
Thomas
,
A.
,
1968
, “
An Opposed Piston Rapid Compression Machine for Preflame Reaction Studies
,”
Proc. Inst. Mech. Eng.
,
183
(
1
), pp.
365
387
.10.1243/PIME_PROC_1968_183_034_02
28.
Zhang
,
Y.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2017
, “
Assessing the Predictions of a NOx Kinetic Mechanism Using Recent Hydrogen and Syngas Experimental Data
,”
Combust. Flame
,
182
, pp.
122
141
.10.1016/j.combustflame.2017.03.019
29.
Mohamed
,
A. A. E.
,
Panigrahy
,
S.
,
Sahu
,
A. B.
,
Bourque
,
G.
, and
Curran
,
H.
,
2020
, “
An Experimental and Modeling Study of the Auto-Ignition of Natural Gas Blends Containing C1–C7 n-Alkanes
,”
Proc. Combust. Inst.
,
38
, epub.10.1016/j.proci.2020.06.015
30.
Zhang
,
K.
,
Banyon
,
C.
,
Togbé
,
C.
,
Dagaut
,
P.
,
Bugler
,
J.
, and
Curran
,
H. J.
,
2015
, “
An Experimental and Kinetic Modeling Study of n-Hexane Oxidation
,”
Combust. Flame
,
162
(
11
), pp.
4194
4207
.10.1016/j.combustflame.2015.08.001
31.
Zhang
,
K.
,
Banyon
,
C.
,
Bugler
,
J.
,
Curran
,
H. J.
,
Rodriguez
,
A.
,
Herbinet
,
O.
,
Battin-Leclerc
,
F.
,
B'Chir
,
C.
, and
Heufer
,
K. A.
,
2016
, “
An Updated Experimental and Kinetic Modeling Study of n-Heptane Oxidation
,”
Combust. Flame
,
172
, pp.
116
135
.10.1016/j.combustflame.2016.06.028
32.
Wu
,
Y.
,
Panigrahy
,
S.
,
Sahu
,
A. B.
,
Bariki
,
C.
,
Beeckmann
,
J.
,
Liang
,
J.
,
Mohamed
,
A. A.
,
Dong
,
S.
,
Tang
,
C.
,
Pitsch
,
H.
,
Huang
,
Z.
, and
Curran
,
H. J.
,
2021
, “
Understanding the Antagonistic Effect of Methanol as a Component in Surrogate Fuel Models: A Case Study of Methanol/n-Heptane Mixtures
,”
Combust. Flame
,
226
, pp.
229
242
.10.1016/j.combustflame.2020.12.006
33.
He
,
Y.
,
Wang
,
Y.
,
Grégoire
,
C.
,
Niedzielska
,
U.
,
Mével
,
R.
, and
Shepherd
,
J. E.
,
2019
, “
Ignition Characteristics of Dual-Fuel Methane-n-Hexane-Oxygen-Diluent Mixtures in a Rapid Compression Machine and a Shock Tube
,”
Fuel
,
249
, pp.
379
391
.10.1016/j.fuel.2019.03.105
34.
Liang
,
J.
,
Zhang
,
Z.
,
Li
,
G.
,
Wan
,
Q.
,
Xu
,
L.
, and
Fan
,
S.
,
2019
, “
Experimental and Kinetic Studies of Ignition Processes of the Methane–n-Heptane Mixtures
,”
Fuel
,
235
, pp.
522
529
.10.1016/j.fuel.2018.08.041
You do not currently have access to this content.