Abstract

Ultra compact combustors (UCCs) look to reduce the overall combustor length and weight in modern gas turbine engines. Previously, a UCC achieved self-sustained operation at subidle speeds in a JetCat P90 RXi turbine engine with a length savings of 33% relative to the stock combustor. However, that combustor experienced flameout as reactions were pushed out of the primary zone before achieving mass flow rates at the engine's idle condition. A new combustor that utilized a bluff body flame stabilization with a larger combustor volume looked to keep reactions in the primary zone within the same axial dimensions. This design was investigated computationally for generalized flow patterns, pressure losses, exit temperature profiles, and reaction distributions at three engine power conditions. The computational results showed the validity of this new UCC, with a turbine inlet temperature of 1080 K and a pattern factor (PF) of 0.67 at the cruise condition. The combustor was then built and tested in the JetCat P90 RXi with rotating turbomachinery and gaseous propane fuel. The combustor maintained a stable flame from ignition through the 36,000 revolutions per minute idle condition. The engine ran self-sustained from 25,000 to 36,000 revolutions per minute with an average exit gas temperature of 980 K, which is comparable to the stock engine.

References

1.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2019
, “
A New Spin on Small-Scale Combustor Geometry
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011504
.10.1115/1.4040658
2.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2019
, “
Experimental Analysis of an Ultra Compact Combustor Powered Turbine Engine
,”
ASME
Paper No. GT2019-90607.10.1115/GT2019-90607
3.
DeMarco
,
K. J.
,
Bohan
,
B. T.
,
Polanka
,
M. D.
, and
Goss
,
L. P.
,
2018
, “
Performance Characterization of a Circumferential Combustion Cavity
,”
AIAA
Paper No. 2018-4922.10.2514/6.2018-4922
4.
Zhang
,
R.
,
Hao
,
F.
, and
Fan
,
W.
,
2018
, “
Combustion and Stability Characteristics of Ultra-Compact Combustor Using Cavity for Gas Turbines
,”
Appl. Energy
,
225
, pp.
940
954
.10.1016/j.apenergy.2018.05.084
5.
DePaola
,
R. A.
,
2020
, “
Microturbine Turbojets: Experimental Evaluation of Commercially Available Engines
,”
Master's thesis
,
Air Force Institute of Technology
, WPAFB, OH.https://apps.dtic.mil/sti/citations/AD1102503
6.
Zhao
,
D.
,
Gutmark
,
E.
, and
de Goey
,
P.
,
2018
, “
A Review of Cavity-Based Trapped Vortex, Ultra-Compact, High-g, Inter-Turbine Combustors
,”
Prog. Energy Combust. Sci.
,
66
, pp.
42
82
.10.1016/j.pecs.2017.12.001
7.
Shanbhogue
,
S. J.
,
Husain
,
S.
, and
Lieuwen
,
T.
,
2009
, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
98
120
.10.1016/j.pecs.2008.07.003
8.
Williams
,
F. A.
,
1966
, “
Flame Stabilization of Premixed Turbulent Gases
,”
Applied Mechanics Surveys
, H. N. Abramson, ed., Spartan Books, Washington, DC, pp.
1157
1170
.
9.
Mattingly
,
J. D.
,
Heiser
,
W. H.
, and
Pratt
,
D. T.
,
2012
,
Aircraft Engine Design
, 2nd ed.,
American Institute of Aeronautics and Astronautics
, Reston, VA.
10.
Fugger
,
C. A.
,
Yi
,
T.
,
Sykes
,
J.
,
Caswell
,
A. W.
,
Rankin
,
B. A.
,
Miller
,
J. D.
, and
Gord
,
J. R.
,
2018
, “
The Structure and Dynamics of a Bluff-Body Stabilized Premixed Reacting Flow
,”
AIAA
Paper No. 2018-1190.10.2514/6.2018-1190
11.
Pathania
,
R. S.
,
Skiba
,
A. W.
,
Sidey-Gibbons
,
J. A. M.
, and
Mastorakos
,
E., O.
,
2021
, “
Lean Blow-Off Scaling of Turbulent Premixed Bluff-Body Flames of Vaporized Liquid Fuels
,”
J. Propul. Power
, 37(3), pp.
479
486
.https://www.repository.cam.ac.uk/bitstream/1810/317239/1/JPP_2020_06_B38133_R3.pdf
12.
Allison
,
P. M.
,
Sidey
,
J. A.
, and
Mastorakos
,
E.
,
2018
, “
Lean Blowoff Scaling of Swirling, Bluff-Body Stabilized Spray Flames
,”
AIAA
Paper No. 2018-1421.10.2514/6.2018-1421
13.
Mattingly
,
J. D.
, and
Boyer
,
K. M.
,
2016
,
Elements of Propulsion: Gas Turbines and Rockets
, 2nd ed.,
AIAA
,
Reston, VA
.
14.
Samuelsen
,
S.
,
2006
, “
Conventional Type Combustion
,”
Advance Power and Energy Program
, The Gas Turbine Handbook, U.S. Department of Energy, National Energy Technology Laboratory, No. DOE/NETL-2006-1230, pp.
209
217
.
15.
Thomas
,
N.
,
Rumpfkeil
,
M.
,
Briones
,
A.
,
Rankin
,
B.
, and
Erdmann
,
T. J.
,
2018
, “
CFD-Based Machine Learning Methodology for Combustor Design Optimization
,”
AIAA Paper No. DCASS-167.
16.
Bohan
,
B. T.
,
2018
, “
Combustion Dynamics and Heat Transfer in an Ultra Compact Combustor
,”
Ph.D. thesis
,
Air Force Institute of Technology
, WPAFB, OH.https://apps.dtic.mil/sti/citations/AD1063502
17.
Special Metals Corporation
,
2008
, “
INCONEL® Alloy 600
,”
Special Metals Corporation
, Huntington, WV.
18.
McBride
,
B. J.
, and
Gordon
,
S.
,
1996
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. Users Manual and Program Description
,”
Lewis Research Center
,
Cleveland, OH
.https://ntrs.nasa.gov/citations/19960044559
You do not currently have access to this content.