Abstract

Flow and heat transfer in axial compressor disk cavities involve strong interaction of axial throughflow at the disk bores with centrifugal buoyant flow in the cavities. This paper presents large eddy simulation (LES) of flow and heat transfer in rotating cavities with a heated shroud and a relatively weak axial cooling throughflow. The conditions considered for a single cavity configuration correspond to Rossby numbers Ro=0.2 and 0.3, rotational Reynolds numbers ReΩ=3.2×105 and 7.7×105, and buoyancy parameters βΔT=0.24 and 0.26. Reasonable agreement of the results with shroud heat transfer measurements was confirmed for the Ro=0.2 condition for which test data were available. A dual cavity configuration for Ro=0.3 and ReΩ=3.2×105 is also modeled. The simulations show that, at low Ro conditions, flow reversals occur along the length of the bore flow path, upstream and downstream of the rotating cavities. With the dual cavity strong, unsteady interactions between the flows in the two cavities occur. These flow interactions result in less stable flow structures, higher air temperatures within the cavities and lower shroud and disk heat transfer compared to the single cavity case. FFT analysis reveals a complex phase-locking mechanism between flows in the two cavities.

References

1.
Gao
,
F.
, and
Chew
,
J. W.
,
2022
, “
Flow and Heat Transfer Mechanisms in a Rotating Compressor Cavity Under Centrifugal Buoyancy-Driven Convection
,”
ASME J. Eng. Gas Turbine Power
,
144
(
5
), p.
051010
.10.1115/1.4052649
2.
Owen
,
J. M.
, and
Long
,
C. A.
,
2015
, “
Review of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111001
.10.1115/1.4031039
3.
Gao
,
F.
,
Pitz
,
D. B.
, and
Chew
,
J. W.
,
2020
, “
Numerical Investigation of Buoyancy-Induced Flow in a Sealed Rapidly Rotating Disc Cavity
,”
Int. J. Heat Mass Transfer
,
147
, p.
118860
.10.1016/j.ijheatmasstransfer.2019.118860
4.
Gao
,
F.
, and
Chew
,
J. W.
,
2020
, “
Ekman Layer Scrubbing and Shroud Heat Transfer in Centrifugal Buoyancy-Driven Convection
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071010
.10.1115/1.4050366
5.
Jackson
,
R. W.
,
Luberti
,
D.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Measurement and Analysis of Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061004
.10.1115/1.4049100
6.
Saini
,
D.
, and
Sandberg
,
R. D.
,
2021
, “
Large-Eddy Simulations of High Rossby Number Flow in the High-Pressure Compressor Inter-Disk Cavity
,”
ASME J. Turbomach.
,
143
(
11
), p.
111002
.10.1115/1.4050951
7.
Saini
,
D.
, and
Sandberg
,
R. D.
,
2020
, “
Simulations of Compressibility Effects in Centrifugal Buoyancy-Induced Flow in a Closed Rotating Cavity
,”
Int. J. Heat Fluid Flow
,
85
, p.
108656
.10.1016/j.ijheatfluidflow.2020.108656
8.
Jiang
,
H.
,
Zhu
,
X.
,
Wang
,
D.
,
Huisman
,
S. G.
, and
Sun
,
C.
,
2020
, “
Supergravitational Turbulent Thermal Convection
,”
Sci. Adv.
,
6
(
40
), p.
eabb8676
.10.1126/sciadv.abb8676
9.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Analysis of Shroud and Disk Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091005
.10.1115/1.4050631
10.
Luberti
,
D.
,
Patinios
,
M.
,
Jackson
,
R. W.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Design and Testing of a Rig to Investigate Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041030
.10.1115/1.4048601
11.
Sun
,
Z.
,
Amirante
,
D.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2016
, “
Coupled Aerothermal Modeling of a Rotating Cavity With Radial Inflow
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032505
.10.1115/1.4031387
12.
Tateishi
,
A.
,
Watanabe
,
T.
, and
Himeno
,
T.
,
2018
, “
Unsteady Flow Simulation of Buoyancy-Driven Flows in High-Pressure Compressor Disk Cavities
,”
ASME
Paper No. GT2018-76327.10.1115/GT2018-76327
13.
Atkins
,
N. R.
, and
Kanjirakkad
,
V.
,
2014
, “
Flow in a Rotating Cavity With Axial Throughflow at Engine Representative Conditions
,”
ASME
Paper No. GT2014-27174.10.1115/GT2014-27174
14.
Gao
,
F.
, and
Chew
,
J. W.
,
2021
, “
Evaluation and Application of Advanced CFD Models for Rotating Disc Flows
,”
Proc. Inst. Mech. Eng., Part C
,
235
(
23
), pp.
6847
6864
.10.1177/09544062211013850
15.
Palermo
,
D. M.
,
Gao
,
F.
,
Amirante
,
D.
,
Chew
,
J. W.
,
Revert
,
A. B.
, and
Beard
,
P. F.
,
2021
, “
Wall Modelled Large Eddy Simulations of Axial Turbine Rim Sealing
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061025
.10.1115/1.4049487
16.
Amirante
,
D.
, and
Hills
,
N. J.
,
2015
, “
Large-Eddy Simulations of Wall Bounded Turbulent Flows Using Unstructured Linear Reconstruction Techniques
,”
ASME J. Turbomach.
,
137
(
5
), p.
051006
.10.1115/1.4028549
17.
Poinsot
,
T. J.
, and
Lele
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
18.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2022
, “
Unsteady Pressure Measurements in a Heated Rotating Cavity
,”
ASME J. Eng. Gas Turbines Power
,
144
(
4
), p.
041017
.10.1115/1.4053390
You do not currently have access to this content.