Abstract

Periodic unsteady flow kinematics in a shrouded multistage low-speed axial compressor has been measured for the first time. Data have been acquired at the inlet and exit of a shrouded third-stage stator with a particular focus on the hub flows. The newly found features of the hub flow in a shrouded multistage compressor are different from those at the midspan or in unshrouded (i.e., cantilevered) compressors. First, the merging of the second-stage stator and third-stage rotor wakes causes positive radial migration near the rotor wake pressure surface at the hub of the third-stage stator inlet. Second, the low-momentum labyrinth seal leakage flow of the third-stage stator merges with the third-stage rotor wake to create streamwise vorticity at the third-stage stator inlet hub. Third, contrary to unshrouded stators, suction side hub corner separation in the shrouded third-stage stator reduces rotor wake stretching. Thus, velocity disturbances are attenuated less, and amplitudes of periodic fluctuations in flow angles are larger at the third-stage stator exit hub than at midspan. The positive radial migration of the rotor wake hub flow and wake stretching reduction are expected to decrease efficiency, whereas streamwise vorticity generation is expected to increase efficiency.

References

1.
Van Zante
,
D. E.
,
Adamczyk
,
J. J.
,
Strazisar
,
A. J.
, and
Okiishi
,
T. H.
,
1997
, “
Wake Recovery Performance Benefit in a High-Speed Axial Compressor
,”
ASME
Paper No. 97-GT-535.10.1115/97-GT-535
2.
Sanders
,
A. J.
,
Papalia
,
J.
, and
Fleeter
,
S.
,
2002
, “
Multi-Blade Row Interactions in a Transonic Axial Compressor—Part I: Stator Particle Image Velocimetry (PIV) Investigation
,”
ASME J. Turbomach.
,
124
(
1
), pp.
10
18
.10.1115/1.1411973
3.
Sanders
,
A. J.
, and
Fleeter
,
S.
,
2001
, “
Multi-Blade Row Interactions in a Transonic Axial Compressor—Part II: Rotor Wake Forcing Function & Stator Unsteady Aerodynamic Response
,”
ASME
Paper No. 2001-GT-0269.10.1115/2001-GT-0269
4.
Kerrebrock
,
J. L.
, and
Mikolajczak
,
A. A.
,
1970
, “
Intra-Stator Transport of Rotor Wakes and Its Effect on Compressor Performance
,”
ASME J. Eng. Power
,
92
(
4
), pp.
359
368
.10.1115/1.3445365
5.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2008
, “
Periodical Unsteady Flow Within a Rotor Blade Row of an Axial Compressor—Part I: Flow Field at Midspan
,”
ASME J. Turbomach.
,
130
(
4
), p.
041004
.10.1115/1.2812329
6.
Valkov
,
T. V.
,
1997
, “
The Effect of Upstream Rotor Vortical Disturbances on the Time-Average Performance of Axial Compressor Stators
,” Massachusetts Institute of Technology, Cambridge, MA, Report No. 227.
7.
Smith
,
L. H.
,
1966
, “
Wake Dispersion in Turbomachines
,”
ASME J. Basic Eng.
,
88
(
3
), pp.
688
690
.10.1115/1.3645942
8.
Jelly
,
T. O.
,
Day
,
I. J.
, and
di Mare
,
L.
,
2017
, “
Phase-Averaged Flow Statistics in Compressors Using a Rotated Hot-Wire Technique
,”
Exp. Fluids
,
58
(
5
), p.
48
.10.1007/s00348-017-2326-x
9.
Soranna
,
F.
,
Chow
,
Y.
,
Uzol
,
O.
, and
Katz
,
J.
,
2006
, “
The Effect of Inlet Guide Vanes Wake Impingement on the Flow Structure and Turbulence Around a Rotor Blade
,”
ASME J. Turbomach.
,
128
(
1
), pp.
82
95
.10.1115/1.2098755
10.
Hah
,
C.
,
2017
, “
Impact of Wake Dispersion on Axial Compressor Performance
,”
ASME
Paper No. GT2017-63020.10.1115/GT2017-63020
11.
Montomoli
,
F.
,
Naylor
,
E.
,
Hodson
,
H. P.
, and
Lapworth
,
L.
,
2013
, “
Unsteady Effects in Axial Compressors: A Multistage Simulation
,”
AIAA J. Propuls. Power
,
29
(
5
), pp.
1001
1008
.10.2514/1.B34273
12.
Lange
,
M.
,
Mailach
,
R.
, and
Vogeler
,
K.
,
2010
, “
An Experimental Investigation of Shrouded and Cantilevered Compressor Stators at Varying Clearances Sizes
,”
ASME
Paper No. GT2010-22106.10.1115/GT2010-22106
13.
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1985
, “
Axial Compressor Stator Aerodynamics
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
485
492
.10.1115/1.3239754
14.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2005
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
.10.1115/1.1811093
15.
Taylor
,
J. V.
, and
Miller
,
R. J.
,
2015
, “
Competing 3D Mechanisms in Compressor Flows
,”
ASME
Paper No. GT2015-43322.10.1115/GT2015-43322
16.
Wellborn
,
S. R.
, and
Okiishi
,
T. H.
,
1999
, “
The Influence of Shrouded Stator Cavity Flows on Multistage Compressor Performance
,”
ASME J. Turbomach.
,
121
(
3
), pp.
486
497
.10.1115/1.2841341
17.
Kim
,
J. W.
,
Lee
,
J. S.
,
Song
,
S. J.
,
Kim
,
T.
, and
Shin
,
H.-W.
,
2012
, “
The Impact of Leakage Flow Tangential Velocity on Secondary Losses in a Shrouded Compressor Cascade
,”
ASME
Paper No. GT2012-69217.10.1115/GT2012-69217
18.
Zambonini
,
G.
, and
Ottavy
,
X.
,
2015
, “
Unsteady Pressure Investigations of Corner Separated Flow in a Linear Compressor Cascade
,”
ASME
Paper No. GT2015-42073.10.1115/GT2015-42073
19.
Zambonini
,
G.
,
Ottavy
,
X.
, and
Kriegseis
,
J.
,
2017
, “
Corner Separation Dynamics in a Linear Compressor Cascade
,”
ASME J. Fluids Eng.
,
139
(
6
), p.
061101
.10.1115/1.4035876
20.
Poensgen
,
C.
, and
Gallus
,
H. E.
,
1991
, “
Three-Dimensional Wake Decay Inside of a Compressor Cascade and Its Influence on the Downstream Unsteady Flow Field—Part II: Unsteady Flow Field Downstream of the Stator
,”
ASME J. Turbomach.
,
113
(
2
), pp.
190
197
.10.1115/1.2929082
21.
Wellborn
,
S. R.
,
2001
, “
Details of Axial-Compressor Shrouded Stator Cavity Flows
,”
ASME
Paper No. 2001-GT-0495.10.1115/2001-GT-0495
22.
Lee
,
J.
,
Lim
,
S.
,
Shin
,
H.-W.
,
Lee
,
S.
,
Lee
,
K.
,
Moon
,
H.
, and
Song
,
S. J.
,
2020
, “
Unsteady Kinematics of Multistage Axial Compressor Shrouded Cavity Flow
,”
Proceedings of GPPS Chania 20, Online Conference
, Sept. 7–9, 2020, Paper No. GPPS-CH-2020-118.
23.
Fröbel
,
T.
,
Kau
,
H. P.
,
Groth
,
C.
, and
Gümmer
,
V.
,
2010
, “
Numerical Investigation of Unsteady Flow Phenomena in an HP Axial Compressor Incorporating Stator Shroud Cavities
,”
AIAA
Paper No. 2010-6532.10.2514/6.2010-6532
24.
Lee
,
J.
,
2019
, “
Experimental Study on Unsteady Kinematics of Shrouded Multistage Axial Compressor Flow
,” Ph.D. thesis,
Seoul National University
, Seoul, South Korea.
25.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
, 3rd ed.,
Wiley
,
Hoboken, NJ
.
26.
Shin
,
H.-W.
,
Whitfield
,
C. E.
, and
Wisler
,
D. C.
,
1994
, “
Rotor-Rotor Interaction for Counter-Rotating Fans—Part 1: Three-Dimensional Flowfield Measurements
,”
AIAA J.
,
32
(
11
), pp.
2224
2233
.10.2514/3.12281
27.
Shin
,
H.-W.
,
Solomon
,
W.
, and
Wadia
,
A.
,
2008
, “
Transonic Fan Tip-Flow Features Revealed by High Frequency Response Over-Tip Pressure Measurements
,”
ASME
Paper No. GT2008-50279.10.1115/GT2008-50279
28.
Khalid
,
S. A.
,
Khalsa
,
A. S.
,
Waitz
,
I. A.
,
Tan
,
C. S.
,
Greitzer
,
E. M.
,
Cumpsty
,
N. A.
,
Adamczyk
,
J. J.
, and
Marble
,
F. E.
,
1999
, “
Endwall Blockage in Axial Compressors
,”
ASME J. Turbomach.
,
121
(
3
), pp.
499
509
.10.1115/1.2841344
29.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
You do not currently have access to this content.