Abstract

To improve the numerical efficiency of the nonlinear calculations required for the dynamic response of damped turbine blades, the authors recently introduced the platform centered reduction (PCR) method which represents the platform as a rigid body subject to a single moment representing the effect of forces from adjacent dampers. The concept of a” basic cycle” is now introduced to simplify—without introducing additional approximations—the functional relationship between the moment on the platform due to the frictional forces and its angle of rotation, both of which are calculated around an axis parallel to the main axis of neck bending. It is shown that, for the first bending mode of vibration, this function completely characterizes the damper-platform assembly, such that for rotation values greater than the” base cycle,” the values of the real and imaginary components of the damper-platform flexural stiffness are obtained a priori, without having to repeat the contact cycle calculations at each amplitude change. The advantage of this approach for numerical calculations and the convenience of having a model focused on the essential aspects of the engineering problem of best coupling between damper and blade are demonstrated. Also, considering the improvements introduced, the” designer's diagram,” already proposed by these authors, is revised. The advantage lies in representing the essential, yet adequate approximation in the relationship between the maximum alternating bending stress due to vibration and the values of the excitation force on the airfoil, values each associated with a corresponding “oscillation amplitude/resonance frequency” pair.

References

1.
Griffin
,
J.
,
1980
, “
Friction Damping of Resonant Stresses in Gas Turbine Engine Airfoils
,”
ASME J. Eng. Power
,
102
(
2
), pp.
329
333
.10.1115/1.3230256
2.
Yang
,
B. D.
, and
Menq
,
C. H.
,
1998
, “
Characterization of Contact Kinematics and Application to the Design of Wedge Dampers in Turbomachinery Blading: Part 2—Prediction of Forced Response and Experimental Verification
,”
ASME J. Eng. Gas Turbines Power
,
120
(
2
), pp.
418
423
.10.1115/1.2818139
3.
Šanliturk
,
K.
,
Ewins
,
D.
, and
Stanbridge
,
A.
,
2001
, “
Underplatform Dampers for Turbine Blades: Theoretical Modeling, Analysis, and Comparison With Experimental Data
,”
ASME. J. Eng. Gas Turbines Power
,
123
(
4
), pp.
919
929
.10.1115/1.1385830
4.
Sextro
,
W.
,
Popp
,
K.
, and
Wolter
,
I.
,
1997
, “
Improved Reliability of Bladed Disks Due to Friction Dampers
,”
ASME
Paper No. 97-GT-189.10.1115/97-GT-189
5.
Csaba
,
G.
,
1999
, “
Modelling of a Microslip Friction Damper Subjected to Translation and Rotation
,”
ASME
Paper No. 99-GT-149.10.1115/99-GT-149
6.
Szwedowicz
,
J.
,
Kissel
,
M.
,
Ravindra
,
B.
, and
Kellerer
,
R.
,
2001
, “
Estimation of Contact Stiffness and Its Role in the Design of a Friction Damper
,”
ASME
Paper No. 2001-GT-0290.10.1115/2001-GT-0290
7.
Jareland
,
M.
,
2001
, “
Experimental Investigation of a Platform Damper With Curved Contact Areas
,”
ASME
Paper No. DETC2001/VIB-21391.10.1115/DETC2001/VIB-21391
8.
Panning
,
L.
,
Popp
,
K.
,
Sextro
,
W.
,
Götting
,
F.
,
Kayser
,
A.
, and
Wolter
,
I.
,
2004
, “
Asymmetrical Underplatform Dampers in Gas Turbine Bladings: Theory and Application
,”
ASME
Paper No. GT2004-53316.10.1115/GT2004-53316
9.
Petrov
,
E. P.
,
2017
, “
Stability Analysis of Multiharmonic Nonlinear Vibrations for Large Models of Gas Turbine Engine Structures With Friction and Gaps
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022508
.10.1115/1.4034353
10.
Pesaresi
,
L.
,
Salles
,
L.
,
Jones
,
A.
,
Green
,
J.
, and
Schwingshackl
,
C.
,
2017
, “
Modelling the Nonlinear Behaviour of an Underplatform Damper Test Rig for Turbine Applications
,”
Mech. Syst. Signal Process.
,
85
, pp.
662
679
.10.1016/j.ymssp.2016.09.007
11.
Hüls
,
M.
,
von Scheidt
,
L. P.
, and
Wallaschek
,
J.
,
2018
, “
Influence of Geometric Design Parameters Onto Vibratory Response and HCF Safety for Turbine Blades With Friction Damper
,”
ASME
Paper No. GT2018-75363.10.1115/GT2018-75363
12.
Hartung
,
A.
,
Hackenberg
,
H.-P.
,
Krack
,
M.
,
Gross
,
J.
,
Heinze
,
T.
, and
von Scheidt
,
L. P.
,
2018
, “
Rig and Engine Validation of the Non-Linear Forced Response Analysis Performed by the Tool OrAgL
,”
ASME
Paper No. GT2018-75186.10.1115/GT2018-75186
13.
Baek
,
S.
, and
Epureanu
,
B.
,
2016
, “
Reduced Order Modeling of Bladed Disks With Friction Ring Dampers
,”
ASME
Paper No. GT2016-57831.10.1115/GT2016-57831
14.
Gastaldi
,
C.
,
Zucca
,
S.
, and
Epureanu
,
B. I.
,
2018
, “
Jacobian Projection Reduced-Order Models for Dynamic Systems With Contact Nonlinearities
,”
Mech. Sys. Sig. Proces.
, 100, pp.
550
569
.10.1016/j.ymssp.2017.07.049
15.
Schwarz
,
S.
,
Kohlmann
,
L.
,
Hartung
,
A.
,
Gross
,
J.
,
Scheel
,
M.
, and
Krack
,
M.
,
2020
, “
Validation of a Turbine Blade Component Test With Frictional Contacts by Phase-Locked-Loop and Force-Controlled Measurements
,”
ASME J. Eng. Gas Turbines Power
,
142
(
5
), p.
051006
.10.1115/1.4044772
16.
Schwingshackl
,
C. W.
,
2012
, “
Measurement of Friction Contact Parameters for Nonlinear Dynamic Analysis
,”
Topics in Modal Analysis I
, Vol.
5
,
Springer
,
New York
, pp.
167
177
.
17.
Gola
,
M.
, and
Liu
,
T.
,
2014
, “
A Direct Experimental-Numerical Method for Investigations of a Laboratory Under-Platform Damper Behavior
,”
Int. J. Solids Struct.
,
51
(
25–26
), pp.
4245
4259
.10.1016/j.ijsolstr.2014.08.011
18.
Gastaldi
,
C.
, and
Gola
,
M.
,
2015
, “
A Random Sampling Strategy for Tuning Contact Parameters of Underplatform Dampers
,”
ASME
Paper No. GT2015-42834.10.1115/GT2015-42834
19.
Gastaldi
,
C.
, and
Gola
,
M. M.
,
2016
, “
Testing, Simulating and Understanding Under-Platform Damper Dynamics
,” Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering, (
ECCOMAS Congress
), Crete, Greece, June 5–10.https://files.eccomasproceedia.org/papers/eccomas-congress-2016/11184.pdf?mtime=20170308164407
20.
Fantetti
,
A.
,
Pennisi
,
C.
,
Zucca
,
S.
,
Botto
,
D.
, and
Schwingshackl
,
C.
,
2020
, “
Comparison of Nonlinear Dynamic Contact Interface Parameters Measured From Two Different Friction Rigs
,”
International Conference on Noise and Vibration Engineering
, Leuven, Belgium, Sept. 13–17.https://www.researchgate.net/publication/343111953_Comparison_of_contact_parameters_measured_with_two_different_friction_rigs_for_nonlinear_dynamic_analysis
21.
Gastaldi
,
C.
, and
Gola
,
M. M.
,
2016
, “
Pre-Optimization of Asymmetrical Underplatform Dampers
,”
ASME
Paper No. GT2016-57359.10.1115/GT2016-57359
22.
Gastaldi
,
C.
,
Berruti
,
T. M.
, and
Gola
,
M. M.
,
2017
, “
The Relevance of Damper Pre-Optimization and Its Effectiveness on the Forced Response of Blades
,”
ASME
Paper No. GT2017-64404.10.1115/GT2017-64402
23.
Gastaldi
,
C.
, and
Gola
,
M. M.
,
2018
, “
Criteria for Best Performance of Pre-Optimized Solid Dampers
,”
ASME
Paper No. GT2018-75961.10.1115/GT2018-75961
24.
Gastaldi
,
C.
, and
Gola
,
M. M.
,
2019
, “
Design Tools to the Best Coupling of Dry-Friction Solid Underplatform Dampers to Turbine Blades
,”
ASME
Paper No. GT2019-91040.10.1115/GT2019-91040
25.
Gastaldi
,
C.
, and
Gola
,
M. M.
,
2021
, “
Platform-Centered Reduction: A Process Capturing the Essentials for Blade-Damper Coupled Optimization
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081001
.10.1115/1.4049187
26.
Gastaldi
,
C.
, and
Gola
,
M. M.
,
2021
, “
A Method to Minimize the Effort for Damper–Blade Matching Demonstrated on Two Blade Sizes
,”
Appl. Sci.
,
11
(
11
), p.
5171
.10.3390/app11115171
27.
Zucca
,
S.
, and
Epureanu
,
B.
,
2014
, “
Bi-Linear Reduced-Order Models of Structures With Friction Intermittent Contacts
,”
Nonlinear Dyn.
,
77
(
3
), pp.
1055
1067
.10.1007/s11071-014-1363-8
28.
Mitra
,
M.
,
Zucca
,
S.
, and
Epureanu
,
B.
,
2016
, “
Adaptive Microslip Projection for Reduction of Frictional and Contact Nonlinearities in Shrouded Blisks
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041016
.10.1115/1.4033003
29.
Tang
,
W.
,
Baek
,
S.
, and
Epureanu
,
B. I.
,
2017
, “
Reduced-Order Models for Blisks With Small and Large Mistuning and Friction Dampers
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012507
.10.1115/1.4034212
30.
Pourkiaee
,
S. M.
, and
Zucca
,
S.
,
2018
, “
A Reduced Order Model for Nonlinear Dynamics of Mistuned Bladed Disks With Shroud Friction Contacts
,”
ASME
Paper No. GT2018-75223.10.1115/GT2018-75223
31.
Joannin
,
C.
,
Thouverez
,
F.
, and
Chouvion
,
B.
,
2018
, “
Reduced-Order Modelling Using Nonlinear Modes and Triple Nonlinear Modal Synthesis
,”
Comput. Struct.
,
203
, pp.
18
33
. jul10.1016/j.compstruc.2018.05.005
32.
Gastaldi
,
C.
,
Berruti
,
T. M.
, and
Gola
,
M. M.
,
2018
, “
The Relevance of Damper Pre-Optimization and Its Effectiveness on the Forced Response of Blades
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
062505
.10.1115/1.4038773
33.
Gastaldi
,
C.
,
Berruti
,
T. M.
, and
Gola
,
M. M.
,
2020
, “
The Effect of Surface Finish on the Proper Functioning of Underplatform Dampers
,”
ASME J. Vib. Acoust.
,
142
(
5
), p.
051103
.10.1115/1.4046954
34.
Gastaldi
,
C.
, and
Berruti
,
T.
,
2018
, “
Competitive Time Marching Solution Methods for Systems With Friction-Induced Nonlinearities
,”
Appl. Sci.
,
8
(
2
), p.
291
.10.3390/app8020291
35.
Berthillier
,
M.
,
Dupont
,
C.
,
Mondal
,
R.
, and
Barrau
,
J. J.
,
1998
, “
Blades Forced Response Analysis With Friction Dampers
,”
ASME J. Vib. Acoust.
,
120
(
2
), pp.
468
474
.10.1115/1.2893853
36.
Marinescu
,
O.
,
Epureanu
,
B.
, and
Banu
,
M.
,
2011
, “
Reduced Order Models of Mistuned Cracked Bladed Disks
,”
ASME J. Vib. Acoust.
,
133
(
5
), p.
051014
.10.1115/1.4003940
37.
Afzal
,
M.
,
Arteaga
,
I. L.
, and
Kari
,
L.
,
2016
, “
An Analytical Calculation of the Jacobian Matrix for 3D Friction Contact Model Applied to Turbine Blade Shroud Contact
,”
Comput. Struct.
,
177
, pp.
204
217
.10.1016/j.compstruc.2016.08.014
38.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.10.1007/s11831-016-9183-2
39.
Gastaldi
,
C.
, and
Gola
,
M. M.
,
2015
, “
An Improved Microslip Model for Variable Normal Loads
,”
Proceedings of the Ninth IFToMM International Conference on Rotor Dynamics
,
Springer International Publishing
, Milan, Italy, Sept. 22–25, pp.
169
179
.10.1007/978-3-319-06590-8_14
40.
Pesaresi
,
L.
,
Armand
,
J.
,
Schwingshackl
,
C.
,
Salles
,
L.
, and
Wong
,
C.
,
2018
, “
An Advanced Underplatform Damper Modelling Approach Based on a Microslip Contact Model
,”
J. Sound Vib.
,
436
, pp.
327
340
.10.1016/j.jsv.2018.08.014
You do not currently have access to this content.