Abstract

Rim seal structures and sealing flows are essential in aero engines for preventing hot gas ingestion from mainstream to turbine disk cavities. A novel design method of rim sealing flow path based on auxiliary sealing holes and sealing air re-distributions has been proved to improve sealing effectiveness. The present paper uses this method to re-design the axial rim sealing flow in a high-pressure turbine front cavity in an engine turbine. The incidence angle of the auxiliary sealing air has been proved to have a significant influence on sealing performance. Three different incidence angles, 0-deg, 35-deg, and 70-deg, with the maximum angle close to the vane exit flow angle, are investigated using unsteady computational fluid dynamics methods validated by experimental data. Sealing effectiveness, swirl ratio, unsteady flow structures in both rim clearance and wheel space cavity are considered. The auxiliary sealing air with a swirl in the circumferential direction is proved to improve and uniform swirl ratio and suppress flow instabilities. This results in a reduction in hot gas ingestion and a considerable improvement in sealing effectiveness. The mechanisms of improving sealing effectiveness using this novel method are explained. The conclusions may support the understanding of the complex flow mechanisms near the rim seal, provide references for the design of this novel structure and give possibilities to improve rim seal performance and engine efficiency.

Reference

1.
Chew
,
J. W.
,
Gao
,
F.
, and
Palermo
,
D. M.
,
2019
, “
Flow Mechanisms in Axial Turbine Rim Sealing
,”
Proc. Inst. Mech. Eng., Part C
,
233
(
23–24
), pp.
7637
7657
.10.1177/0954406218784612
2.
Sangan
,
C. M.
,
Scobie
,
J. A.
,
Michael Owen
,
J.
,
Lock
,
G. D.
,
Tham
,
K. M.
, and
Laurello
,
V. P.
,
2014
, “
Performance of a Finned Turbine Rim Seal
,”
ASME J. Turbomachinery
,
136
(
11
), p.
111008
.10.1115/1.4028116
3.
Scobie
,
J. A.
,
Teuber
,
R.
,
Sheng Li
,
Y.
,
Sangan
,
C. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2016
, “
Design of an Improved Turbine Rim-Seal
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022503
.10.1115/1.4031241
4.
Li
,
J.
,
Gao
,
Q.
,
Li
,
Z.
, and
Feng
,
Z.
,
2016
, “
Numerical Investigations on the Sealing Effectiveness of Turbine Honeycomb Radial Rim Seal
,”
ASME J. Eng. Gas Turbines Power
,
138
(
10
), p.
102601
.10.1115/1.4033139
5.
Rabs
,
M.
,
Benra
,
F. K.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
,
2009
, “
Investigation of Flow Instabilities Near the Rim Cavity of a 1.5 Stage Gas Turbine
,”
ASME
Paper No. GT2009-59965.10.1115/GT2009-59965
6.
Gao
,
F.
,
Chew
,
J. W.
,
Beard
,
P. F.
,
Amirante
,
D.
, and
Hills
,
N. J.
,
2018
, “
Large-Eddy Simulation of Unsteady Turbine Rim Sealing Flows
,”
Int. J. Heat Fluid Flow
,
70
, pp.
160
170
.10.1016/j.ijheatfluidflow.2018.02.002
7.
Michael Owen
,
J.
,
Wu
,
K.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Cho
,
G.
, and
Lock
,
G. D.
,
2015
, “
Use of Pressure Measurements to Determine Effectiveness of Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032510
.10.1115/1.4028395
8.
Gao
,
F.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2020
, “
Inertial Waves in Turbine Rim Seal Flows
,”
Phys. Rev. Fluids
,
5
(
2
), p.
024802
.10.1103/PhysRevFluids.5.024802
9.
Chilla
,
M.
,
Hodson
,
H.
, and
Newman
,
D.
,
2013
, “
Unsteady Interaction Between Annulus and Turbine Rim Seal Flows
,”
ASME J. Turbomachinery
,
135
(
5
), p.
051024
.10.1115/1.4023016
10.
Wang
,
R.
,
Du
,
Q.
,
Liu
,
G.
,
Lian
,
Z.
,
Xie
,
L.
, and
Zhu
,
J.
,
2020
, “
Influence of Secondary Sealing Flow on Performance of Turbine Axial Rim Seals
,”
J. Therm. Sci.
,
29
(
3
), pp.
840
851
.10.1007/s11630-020-1317-z
11.
Wang
,
R.
,
Liu
,
G.
,
Du
,
Q.
,
Lian
,
Z.
, and
Xie
,
L.
,
2019
, “
An Improved Control Method of Rim Seal Based on Auxiliary Sealing Holes
,”
GPPS
,
Beijing, China
, Sept. 16–18.10.33737/gpps19-bj-096
12.
Darby
,
P. W.
,
Mesny
,
A. W.
,
De Cosmo
,
G.
,
Carnevale
,
M.
,
Lock
,
G. D.
,
Scobie
,
J. A.
, and
Sangan
,
C. M.
,
2021
, “
Conditioning of Leakage Flows in Gas Turbine Rotor–Stator Cavities
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p.
021009
.10.1115/1.4049409
13.
Zlatinov
,
M. B.
,
Tan
,
C. S.
,
Little
,
D.
, and
Montgomery
,
M.
,
2016
, “
Effect of Purge Flow Swirl on Hot-Gas Ingestion Into Turbine Rim Cavities
,”
J. Propul. Power
,
32
(
5
), pp.
1055
1066
.10.2514/1.B35775
14.
Clark
,
K.
,
Barringer
,
M.
,
Johnson
,
D.
,
Thole
,
K.
,
Grover
,
E.
, and
Robak
,
C.
,
2018
, “
Effects of Purge Flow Configuration on Sealing Effectiveness in a Rotor–Stator Cavity
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
112502
.10.1115/1.4040308
15.
Patinios
,
M.
,
Ong
,
I. L.
,
Scobie
,
J. A.
,
Lock
,
G. D.
, and
Sangan
,
C. M.
,
2019
, “
Influence of Leakage Flows on Hot Gas Ingress
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021010
.10.1115/1.4040846
16.
Clark
,
K.
,
Barringer
,
M.
,
Thole
,
K.
,
Clum
,
C.
,
Hiester
,
P.
,
Memory
,
C.
, and
Robak
,
C.
,
2017
, “
Effects of Purge Jet Momentum on Sealing Effectiveness
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
031904
.10.1115/1.4034545
17.
Horwood
,
J.
,
2019
, “
Computation of Flow Instabilities in Turbine Rim Seals
,”
Doctoral dissertation
,
University of Bath
, Bath, UK.https://researchportal.bath.ac.uk/en/studentTheses/computation-of-flow-instabilities-in-turbinerim-seals
18.
Wang
,
R.
,
2020
, “
Investigation on the Unsteady Mechanisms of Rim Seal Flow and the Control Methods of Hot Gas Ingestion
,” Master thesis in Chinese,
University of Chinese Academy of Sciences
, Huairou District, China.
19.
Kusbeci
,
M. E.
, and
Chew
,
J. W.
,
2018
, “
Assessment of Wall-Modeled LES for Pre-Swirl Cooling Systems
,”
ASME
Paper No. GT2018-75112.10.1115/GT2018-75112
20.
Javiya
,
U.
,
Chew
,
J. W.
,
Hills
,
N. J.
,
Zhou
,
L.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2012
, “
CFD Analysis of Flow and Heat Transfer in a Direct Transfer Preswirl System
,”
ASME J. Turbomachinery
,
134
(
3
), p.
031017
.10.1115/1.4003229
21.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Michael Owen
,
J.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part I: Externally Induced Ingress
,”
ASME J. Turbomachinery
,
135
(
2
), p.
021012
.10.1115/1.4006609
22.
Schlichting
,
H.
, and
Gersten
,
K.
,
2016
,
Boundary-Layer Theory
,
Springer
, Berlin.
You do not currently have access to this content.