Abstract

The global drive toward renewable energy is imposing challenging operating requirements on power turbines. Flexible load-leveling applications must accept more frequent and demanding start-stop cycles. Full transient analyses are too computationally expensive for real-time simulation across all operating regimes so monitoring relies on sparse physical measurements. Alone, these sparse data lack the fidelity for real-time prediction of a complex thermal field. A new hybrid methodology is proposed, coupling data across a range of fidelities to bridge the limitations in the individual analyses. Combining several fidelity methods in parallel, low-order models, corrected by real-time physical measurements, is calibrated with high-fidelity simulations. The multifaceted hybrid approach enables the real-time speed of low-order analysis at high resolution. This paper series develops the critical enabling features of the hybrid method. Real-time cross-fidelity data transition is fundamental to the hybrid methodology. A novel neural network auto-encoder method is presented, facilitating complex thermal profile reconstruction. Uncovering a compressed latent space, auto-encoders leverage underlying data features for fast simulation. Coupled with a dynamic mask and top-k selection, thermal probe placement can be automatically optimized. The auto-encoder method is demonstrated on a turbine casing, reconstructing over 500 h of transient operation in real-time, whilst reducing the required number of measurements by half.

References

1.
Della Villa
,
S. A.
, “
Energy Innovation: A Focus on Power Generation Data Capture and Analytics in a Competitive Market
,”
ASME
Paper No. GT2018-75030.10.1115/GT2018-75030
2.
Greis
,
J.
,
Gobrecht
,
E.
, and
Wendt
,
S.
,
2012
, “
Flexible and Economical Operation of Power Plants - 25 Years of Expertise
,”
ASME
Paper No. GT2012–68716.10.1115/GT2012-68716
3.
World Energy Council
,
2016
, “
World Energy Scenarios 2016
,” World Energy Council, London, UK, accessed Nov. 28, 2022, www.worldenergy.org/publications
4.
Stolworthy
,
M.
,
2022
, “GB Fuel Type Power Generation Production,” accessed Oct. 17, 2022, http://Gridwatch.co.uk
5.
Dominiczak
,
K.
,
Rzadkowski
,
R.
, and
Radulski
,
W.
,
2015
, “
Steam Turbine Stress Control Using NARX Neural Network
,”
Open Eng.
,
5
(
1
), p.
43
.10.1515/eng-2015-0043
6.
Goyal
,
V.
,
Xu
,
M.
,
Kapat
,
J.
, and
Vesely
,
L.
,
2020
, “
Prediction of Gas Turbine Performance Using Machine Learning Methods
,”
ASME
Paper No. GT2020-15232. 10.1115/GT2020-15232
7.
Ibrahem
,
I. M.
,
Akhrif
,
O.
,
Moustapha
,
H.
, and
Staniszewski
,
M.
,
2020
, “An Ensemble of Recurrent Neural Networks for Real Time Performance Modelling of Three-Spool Aero-Derivative Gas Turbine Engine,”
ASME J. Eng. Gas Turbines Power
, 143(10), p.
101004
.10.1115/1.4051112
8.
Panov
,
V.
, and
Cruz-Manzo
,
S.
,
2020
, “Gas Turbine Performance Digital Twin for Real-Time Embedded Systems,”
ASME
Paper No. GT2020-14664. 10.1115/GT2020-14664
9.
Łuczyński
,
P.
, Toebben, D., Wirsum, M., Mohr, W. F. D., and Helbig, K.,
2019
, “
Unsteady Conjugate Heat Transfer Investigation of a Multistage Steam Turbine in Warm-Keeping Operation With Hot Air
,”
ASME J. Eng. Gas Turbines Power
, 141(1), p. 011005.10.1115/1.4040823
10.
Toebben
,
D.
, Hellmig, A., Luczynski, P., Wirsum, M., Mohr, W. F. D., and Helbig, K.,
2019
, “
Analytical Heat Transfer Correlation for a Multistage Steam Turbine in Warm-Keeping Operation With Air
,”
ASME J. Eng. Gas Turbines Power
, 141(1), p. 011013.10.1115/1.4040717
11.
Brilliant
,
H. M.
, and
Tolpadi
,
A. K.
,
2004
, “
Analytical Approach to Steam Turbine Heat Transfer in a Combined Cycle Power Plant
,”
ASME
Paper No. GT2004-53387.10.1115/GT2004-53387
12.
Mukhopadhyay
,
D.
,
Village
,
H.
,
Road
,
W.
,
Brilliant
,
H. M.
,
Road
,
O. R.
,
Zheng
,
X.
, and
Road
,
O. R.
,
2018
, “
Development of a Conjugate Heat Transfer Simulation Methodology for Prediction of Steam Turbine Cool- Down Phenomena and Shell Deflection
,”
ASME
Paper No. GT2014-25874. 10.1115/GT2014-25874
13.
Spelling
,
J.
,
Jöcker
,
M.
, and
Martin
,
A.
,
2012
, “Thermal Modeling of a Solar Steam Turbine With a Focus on Start-Up Time Reduction,”
ASME J. Eng. Gas Turbines Power
, 134(1), p. 013001.10.1115/1.4004148
14.
Topel
,
M.
,
Spelling
,
J.
,
Jöcker
,
M.
, and
Laumert
,
B.
,
2014
, “
Geometric Modularity in the Thermal Modeling of Solar Steam Turbines
,”
Energy Procedia
,
49
, pp.
1737
1746
.10.1016/j.egypro.2014.03.184
15.
Topel
,
M.
, and
Laumert
,
B.
,
2018
, “
Improving Concentrating Solar Power Plant Performance by Increasing Steam Turbine Flexibility at Start-Up
,”
Sol. Energy
,
165
, pp.
10
18
.10.1016/j.solener.2018.02.036
16.
Mohr
,
W. F.
, and
Ruffino
,
P.
,
2012
, “Experimental Investigation Into Thermal Behaviour of Steam Turbine Components, Part 1 - Temperature Measurements With Optical Probes,”
ASME
Paper No. GT2012-68703.10.1115/GT2012-68703
17.
Marinescu
,
G.
,
Mohr
,
W. F.
,
Ehrsam
,
A.
,
Ruffino
,
P.
, and
Sell
,
M.
,
2014
, “
Experimental Investigation Into Thermal Behavior of Steam Turbine Components–Temperature Measurements With Optical Probes and Natural Cooling Analysis
,” ASME
J. Eng. Gas Turbines Power
,
136
(
2
), p.
021602
.10.1115/1.4025556
18.
Marinescu
,
G.
,
Ehrsam
,
A.
, and
Sell
,
M.
,
2013
, “
Experimental Investigation Into Thermal Behavior of Steam Turbine Components. Part 3–Startup and the Impact on LCF Life
,”
ASME
Paper No. GT2013-94356. 10.1115/GT2013-94356
19.
Marinescu
,
G.
,
Sell
,
M.
, and
Stein
,
P.
,
2014
, “
Experimental Investigation Into Thermal Behavior of Steam Turbine Components. Part 4–Natural Cooling and Robustness of the Overconductivity Function
,”
ASME
Paper No. GT2014–25247. 10.1115/GT2014-25247
20.
Born
,
D.
, Stein, P.,
Marinescu
,
G.
,
Koch
,
S.
, and Schumacher, D.,
2017
, “
Thermal Modelling of an Intermediate Pressure Steam Turbine by Means of Conjugate Heat Transfer—Simulation and Validation
,”
ASME J. Eng. Gas Turbines Power
, 139(3), p. 031903.10.1115/1.4034513
21.
Baker
,
M.
,
2022
, “
Turbines for Flexible Power Plant Operation
,” D.Phil thesis, Oxford Research Archive (ORA), Bodleian Libraries, University of Oxford, Oxford
, UK.
22.
Sadeghi
,
M.
,
Behnia
,
F.
, and
Amiri
,
R.
,
2020
, “
Window Selection of the Savitzky-Golay Filters for Signal Recovery From Noisy Measurements
,”
IEEE Trans. Instrum. Meas.
,
69
(
8
), pp.
5418
5427
.10.1109/TIM.2020.2966310
23.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al.,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.
24.
Lee
,
D. T.
, and
Schachter
,
B. J.
,
1980
, “
Two Algorithms for Constructing a Delaunay Triangulation
,”
Int. J. Comput. Inf. Sci.
,
9
(
3
), pp.
219
242
.10.1007/BF00977785
25.
Kramer
,
M. A.
,
1991
, “
Nonlinear Principal Component Analysis Using Autoassociative Neural Networks
,”
AIChE J.
,
37
(
2
), pp.
233
243
.10.1002/aic.690370209
26.
Schapire
,
R. E.
,
2003
,
The Boosting Approach to Machine Learning: An Overview
,
Springer
,
New York
.10.1007/978-0-387-21579-2_9
27.
Roy
,
V.
,
Simonetto
,
A.
, and
Leus
,
G.
,
2018
, “
Spatio-Temporal Field Estimation Using Kriged Kalman Filter (KKF) With Sparsity-Enforcing Sensor Placement
,”
Sensors
,
18
(
6
), p.
1778
.10.3390/s18061778
28.
Venkatasubramanian
,
V.
,
Rengaswamy
,
R.
,
Yin
,
K.
, and
Kavuri
,
S. N.
,
2003
, “
A Review of Process Fault Detection and Diagnosis: Part I: Quantitative Model-Based Methods
,”
Comput. Chem. Eng.
,
27
(
3
), pp.
293
311
.10.1016/S0098-1354(02)00160-6
29.
Venkatasubramanian
,
V.
,
Rengaswamy
,
R.
, and
Kavuri
,
S. N.
,
2003
, “
A Review of Process Fault Detection and Diagnosis: Part II: Qualitative Models and Search Strategies
,”
Comput. Chem. Eng.
,
27
(
3
), pp.
313
326
.10.1016/S0098-1354(02)00161-8
You do not currently have access to this content.