Abstract

The precessing vortex core (PVC) is a helically shaped coherent flow structure that occurs in reacting and nonreacting swirling flows undergoing vortex breakdown. In swirl-stabilized combustors, the PVC affects important phenomena, such as turbulent mixing and thermoacoustic oscillations. In this work, a closed-loop flow control system is developed, which allows for phase-opposition control of the PVC, to achieve appropriate conditions to systematically investigate the influence of the PVC on turbulent flames. The control consists of a zero-net-mass-flux actuator placed in the mixing section of the combustor, where the PVC is most receptive to periodic forcing. The flow control system is characterized from pressure measurements and particle image velocimetry (PIV) and the impact on flame dynamics is extracted from OH*-chemiluminescence measurements. The data reveal that the PVC amplitude is considerably suppressed by the phase-opposition control without changing the overall characteristics of flow and flame, which is crucial to study the exclusive effect of the PVC on combustion processes. Moreover, the control allows the PVC amplitude to be adjusted gradually to investigate the PVC impact on turbulent mixing and flame dynamics. It is revealed that the PVC-induced flow fluctuations mainly affect the large-scale mixing, while the small scale mixing remains unchanged. This is because the suppression of the PVC allows other modes to become more dominant and the overall turbulent kinetic energy (TKE) budget remains unchanged. The destabilization of other modes, such as the axisymmetric mode, may have some implications on thermoacoustic instability.

References

1.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
2.
Petz
,
C.
,
Hege
,
H.-C.
,
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
,
Wygnanski
,
I.
, and
Noack
,
B. R.
,
2011
, “
Global Modes in a Swirling Jet Undergoing Vortex Breakdown
,”
Phys. Fluids
,
23
(
9
), p.
091102
.10.1063/1.3640007
3.
Oberleithner
,
K.
,
Terhaar
,
S.
,
Rukes
,
L.
, and
Paschereit
,
C. O.
,
2013
, “
Why Nonuniform Density Suppresses the Precessing Vortex Core
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
121506
.10.1115/1.4025130
4.
Terhaar
,
S.
,
Oberleithner
,
K.
, and
Paschereit
,
C.
,
2015
, “
Key Parameters Governing the Precessing Vortex Core in Reacting Flows: An Experimental and Analytical Study
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3347
3354
.10.1016/j.proci.2014.07.035
5.
Oberleithner
,
K.
,
Stöhr
,
M.
,
Im
,
S. H.
,
Arndt
,
C. M.
, and
Steinbergb
,
A. M.
,
2015
, “
Formation and Flame-Induced Suppression of the Precessing Vortex Core in a Swirl Combustor: Experiments and Linear Stability Analysis
,”
Combust. Flame
,
162
(8), pp. 3100–3114.10.1016/j.combustflame.2015.02.015
6.
An
,
Q.
,
Kwong
,
W. Y.
,
Geraedts
,
B. D.
, and
Steinberg
,
A. M.
,
2016
, “
Coupled Dynamics of Lift-Off and Precessing Vortex Core Formation in Swirl Flames
,”
Combust. Flame
,
168
, pp.
228
239
.10.1016/j.combustflame.2016.03.011
7.
Stöhr
,
M.
,
Oberleithner
,
K.
,
Sieber
,
M.
,
Yin
,
Z.
, and
Meier
,
W.
,
2017
, “
Experimental Study of Transient Mechanisms of Bi-Stable Flame Shape Transitions in a Swirl Combustor
,”
ASME
Paper No. GT2017-65003. 10.1115/GT2017-65003
8.
Terhaar
,
S.
,
Ćosić
,
B.
,
Paschereit
,
C.
, and
Oberleithner
,
K.
,
2016
, “
Suppression and Excitation of the Precessing Vortex Core by Acoustic Velocity Fluctuations: An Experimental and Analytical Study
,”
Combust. Flame
,
172
, pp.
234
251
.10.1016/j.combustflame.2016.06.013
9.
Ghani
,
A.
,
Poinsot
,
T.
,
Gicquel
,
L.
, and
Müller
,
J.-D.
,
2016
, “
LES Study of Transverse Acoustic Instabilities in a Swirled Kerosene/Air Combustion Chamber
,”
Flow, Turbul. Combust.
,
96
(
1
), pp.
207
226
.10.1007/s10494-015-9654-9
10.
Frederick
,
M.
,
Manoharan
,
K.
,
Dudash
,
J.
,
Brubaker
,
B.
,
Hemchandra
,
S.
, and
O'Connor
,
J.
,
2018
, “
Impact of Precessing Vortex Core Dynamics on Shear Layer Response in a Swirling Jet
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061503
.10.1115/1.4038324
11.
Mathews
,
B.
,
Hansford
,
S.
, and
O'Connor
,
J.
,
2016
, “
Impact of Swirling Flow Structure on Shear Layer Vorticity Fluctuation Mechanisms
,”
ASME
Paper No. GT2016-56460. 10.1115/GT2016-56460
12.
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame
,”
Combust. Flame
,
159
(
8
), pp.
2650
2668
.10.1016/j.combustflame.2012.04.002
13.
Terhaar
,
S.
,
Krüger
,
O.
, and
Paschereit
,
C. O.
,
2014
, “
Flow Field and Flame Dynamics of Swirling Methane and Hydrogen Flames at Dry and Steam-Diluted Conditions
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
041503
.10.1115/1.4028392
14.
Stöhr
,
M.
,
Arndt
,
C.
, and
Meier
,
W.
,
2015
, “
Transient Effects of Fuel-Air Mixing in a Partially-Premixed Turbulent Swirl Flame
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3327
3335
.10.1016/j.proci.2014.06.095
15.
Galley
,
D.
,
Ducruix
,
S.
,
Lacas
,
F.
, and
Veynante
,
D.
,
2011
, “
Mixing and Stabilization Study of a Partially Premixed Swirling Flame Using Laser Induced Fluorescence
,”
Combust. Flame
,
158
(
1
), pp.
155
171
.10.1016/j.combustflame.2010.08.004
16.
Lückoff
,
F.
,
Sieber
,
M.
, and
Oberleithner
,
K.
,
2018
, “
Open-Loop Control of the Precessing Vortex Core in a Swirl-Stabilized Combustor: Impact on Flame Shape and Flame Stability
,”
ASME
Paper No. GT2018-75472. 10.1115/GT2018-75472
17.
Paredes
,
P.
,
Terhaar
,
S.
,
Oberleithner
,
K.
,
Theofilis
,
V.
, and
Paschereit
,
C. O.
,
2015
, “
Global and Local Hydrodynamic Stability Analysis as a Tool for Combustor Dynamics Modeling
,”
ASME
Paper No. GT2015-44173.
18.
Gallaire
,
F.
,
Ruith
,
M.
,
Meiburg
,
E.
,
Chomaz
,
J.-M.
, and
Huerre
,
P.
,
2006
, “
Spiral Vortex Breakdown as a Global Mode
,”
J. Fluid Mech.
,
549
(
1
), pp.
71
80
.10.1017/S0022112005007834
19.
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
,
Petz
,
C.
,
Hege
,
H.-C.
,
Noack
,
B. R.
, and
Wygnanski
,
I.
,
2011
, “
Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction
,”
J. Fluid Mech.
,
679
, pp.
383
414
.10.1017/jfm.2011.141
20.
Qadri
,
U. A.
,
Mistry
,
D.
, and
Juniper
,
M. P.
,
2013
, “
Structural Sensitivity of Spiral Vortex Breakdown
,”
J. Fluid Mech.
,
720
, pp.
558
581
.10.1017/jfm.2013.34
21.
Tammisola
,
O.
, and
Juniper
,
M.
,
2016
, “
Coherent Structures in a Swirl Injector at Re = 4800 by Nonlinear Simulations and Linear Global Modes
,”
J. Fluid Mech.
,
792
, pp.
620
657
.10.1017/jfm.2016.86
22.
Kaiser
,
T. L.
,
Poinsot
,
T.
, and
Oberleithner
,
K.
,
2018
, “
Stability and Sensitivity Analysis of Hydrodynamic Instabilities in Industrial Swirled Injection Systems
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
051506
.10.1115/1.4038283
23.
Rukes
,
L.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
An Assessment of Turbulence Models for Linear Hydrodynamic Stability Analysis of Strongly Swirling Jets
,”
Eur. J. Mech. B
,
59
, pp.
205
218
.10.1016/j.euromechflu.2016.05.004
24.
Müler
,
J. S.
,
Lückoff
,
F.
, and
Oberleithner
,
K.
,
2018
, “
Guiding Actuator Designs for Active Flow Control of the Precessing Vortex Core by Adjoint Linear Stability Analysis
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041028
.10.1115/1.4040862
25.
Kuhn
,
P.
,
Moeck
,
J. P.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Control of the Precessing Vortex Core by Open and Closed-Loop Forcing in the Jet Core
,”
ASME
Paper No. GT2016-57686. 10.1115/GT2016-57686
26.
Lückoff
,
F.
,
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2017
, “
Characterization of Different Actuator Designs for the Control of the Precessing Vortex Core in a Swirl-Stabilized Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041503
.10.1115/1.4038039
27.
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Spectral Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
792
(
4
), pp.
798
828
.10.1017/jfm.2016.103
28.
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Advanced Identification of Coherent Structures in Swirl-Stabilized Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021503
.10.1115/1.4034261
29.
Göckeler
,
K.
,
Terhaar
,
S.
, and
Oliver Paschereit
,
C.
,
2013
, “
Residence Time Distribution in a Swirling Flow at Nonreacting, Reacting, and Steam-Diluted Conditions
,”
ASME. J. Eng. Gas Turbines Power.
,
136
(
4
), p.
041505
.10.1115/1.4026000
30.
Hussain
,
A. K. M. F.
, and
Reynolds
,
W. C.
,
1970
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow
,”
J. Fluid Mech.
,
41
(
2
), pp.
241
258
.10.1017/S0022112070000605
31.
Taylor
,
G. I.
,
1935
, “
Statistical Theory of Turbulence
,”
Proc. R. Soc. London A
,
151
(
873
), pp.
421
444
.10.1098/rspa.1935.0158
32.
Leuckel
,
W.
,
1967
, “
Swirl Intensities, Swirl Types and Energy Losses of Different Swirl Generating Devices
,” International Flame Research Foundation, Ijmuiden, The Netherlands, Report No. G02/a/16.
33.
Soria
,
J.
,
1996
, “
An Investigation of the Near Wake of a Circular Cylinder Using a Video-Based Digital Cross-Correlation Particle Image Velocimetry Technique
,”
Exp. Therm. Fluid Sci.
,
12
(
2
), pp.
221
233
.10.1016/0894-1777(95)00086-0
34.
Huang
,
H. T.
,
Fiedler
,
H. E.
, and
Wang
,
J. J.
,
1993
, “
Limitation and Improvement of PIV
,”
Exp. Fluids
,
15
(
4–5
), pp.
263
273
.10.1007/BF00189883
35.
Brunton
,
S. L.
, and
Noack
,
B. R.
,
2015
, “
Closed-Loop Turbulence Control: Progress and Challenges
,”
Appl. Mech. Rev.
,
67
(
5
), p.
050801
.10.1115/1.4031175
36.
Greenblatt
,
D.
, and
Wygnanski
,
I. J.
,
2000
, “
The Control of Flow Separation by Periodic Excitation
,”
Prog. Aerosp. Sci.
,
36
(
7
), pp.
487
545
.10.1016/S0376-0421(00)00008-7
37.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
,
1998
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press, Cambridge, UK
.
38.
Findeisen
,
J.
,
Gnirß
,
M.
,
Damaschke
,
N.
,
Schiffer
,
H.
, and
Tropea
,
C.
,
2005
, “
2D-Oncentration Measurements Based on Mie Scattering Using a Commercial PIV System
,”
Sixth International Symposium on Particle Image Velocimetry
, Pasadena, CA, pp.
21
23
.
39.
Freund
,
O.
, and
Rehder
,
H. J.
,
Philipp
,
S.
, and
Roehle
, I.
,
2011
, “
Experimental Investigations on Cooling Air Ejection at a Straight Turbine Cascade Using PIV and QLS
,”
ASME
Paper No. GT2011-45296. 10.1115/GT2011-45296
40.
Oberleithner
,
K.
,
Paschereit
,
C. O.
, and
Wygnanski
,
I.
,
2014
, “
On the Impact of Swirl on the Growth of Coherent Structures
,”
J. Fluid Mech.
,
741
(
2
), pp.
156
199
.10.1017/jfm.2013.669
You do not currently have access to this content.