Abstract

This study aims to investigate the reversible operation of a bladeless air expander prototype operated reversibly in compressor mode to understand the performance by numerical method and compare its results experimentally. A bladeless machine can reverse its operation by simply inverting the rotational speed. However, expander and compressor performance may differ significantly since losses are exacerbated in the compressor mode. The prototype was previously tested as an expander (experimental highest isentropic efficiency of 36.5%). In this work, the reverse mode is discussed, when the prototype is actuated as a compressor, with and without diffuser at variable rotational speeds. In compressor mode, the fluid enters through the center axially, passes radially outwards through disk gaps, and exits throughout the diffuser. The momentum transfer and pressure gain are carried out by the shear force produced on the surface of the rotating disk. An experimental/theoretical analysis focused on the pressure ratio, mass flow, and efficiency of bladeless compressor is conducted. High losses (main leakage across the rotor) were noticed during the experiments, affecting the overall Tesla compressor performance. Numerical calculations are carried out to estimate leakage losses by comparison with experimental results. It is shown that the original expander design would require specific modifications to reduce end disk leakages, which are higher in compressor mode than in expansion mode, significantly affecting the elaborated net mass flow. Improved diffuser, scroll, disk end gaps, and sealing mechanisms are discussed in order to augment overall performance of the bladeless prototype in compressor mode.

References

1.
Gadducci
,
E.
,
Lamberti
,
T.
,
Bellotti
,
D.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2021
, “
BoP Incidence on a 240 KW PEMFC System in a Ship-Like Environment, Employing a Dedicated Fuel Cell Stack Model
,”
Int. J. Hydrogen Energy
,
46
(
47
), pp.
24305
24317
.10.1016/j.ijhydene.2021.04.192
2.
Rivarolo
,
M.
,
Rattazzi
,
D.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2021
, “
Multi-Criteria Comparison of Power Generation and Fuel Storage Solutions for Maritime Application
,”
Energy Convers. Manage.
,
244
, p.
114506
.10.1016/j.enconman.2021.114506
3.
Magistri
,
L.
,
Costamagna
,
P.
,
Massardo
,
A. F.
,
Rodgers
,
C.
, and
McDonald
,
C. F.
,
2002
, “
A Hybrid System Based on a Personal Turbine (5 KW) and a Solid Oxide Fuel Cell Stack: A Flexible and High Efficiency Energy Concept for the Distributed Power Market
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), pp.
850
857
.10.1115/1.1473825
4.
Miller
,
G. E.
, and
Fink
,
R.
,
1999
, “
Analysis of Optimal Design Configurations for a Multiple Disk Centrifugal Blood Pump
,”
Int. Soc. Artif. Organs Artif. Organs
,
23
(
6
), pp.
559
565
.10.1046/j.1525-1594.1999.06403.x
5.
Oliveira
,
M.
, and
Páscoa
,
J. M.
,
2009
, “
Analytical and Experimental Modeling of a Viscous Disc Pump for MEMS Applications
,”
III National Conference on Fluid Mechanics
, Thermodynamics and Energy, MEFTE - Bragança, Portugal, Sept. 17–18, Vol. 9.https://www.researchgate.net/publication/229002614_Analytical_and_experimental_modeling_of_a_viscous_disc_pump_for_MEMS_applications
6.
Massardo
,
A.
, and
Satta
,
A.
,
1990
, “
Axial Flow Compressor Design Optimization. Part I. Pitch Line Analysis and Multivariable Objective Function Influence
,”
ASME J. Turbomach.
,
112
(
3
), pp.
399
404
.10.1115/1.2927673
7.
Arnulfi
,
G. L.
,
Giannattasio
,
P.
,
Giusto
,
C.
,
Massardo
,
A. F.
,
Micheli
,
D.
, and
Pinamonti
,
P.
,
1999
, “
Multistage Centrifugal Compressor Surge Analysis. Part I: Experimental Investigation
,”
ASME J. Turbomach.
,
121
(
2
), pp.
305
311
.10.1115/1.2841315
8.
Tesla
,
N.
,
1913
, “Turbine,” U.S. Patent No. 1061206.
9.
Tesla
,
N.
,
1913
, “Fluid Propulsion,'' U.S. Patent No. 1061142.
10.
Epstein
,
A. H.
,
2004
, “
Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
205
226
.10.1115/1.1739245
11.
Sirakov
,
B.
,
Gong
,
Y.
,
Epstein
,
A.
, and
Tan
,
C.
,
2004
, “
Design and Characterization of Micro-Compressor Impellers
,”
ASME
Paper No. GT2004-53332.10.1115/GT2004-53332
12.
Rice
,
W.
,
1963
, “
An Analytical and Experimental Investigation of Multiple Disk Pumps and Compressors
,”
ASME J. Eng. Power
,
85
(
3
), pp.
191
198
.10.1115/1.3675253
13.
Renuke
,
A.
,
Reggio
,
F.
,
Silvestri
,
P.
,
Traverso
,
A.
, and
Pascenti
,
M.
, “
Experimental Investigation on a 3 kW Air Tesla Expander With High Speed Generator
,”
ASME
Paper No. GT2020-14572.10.1115/GT2020-14572
14.
Wang
,
B.
,
Okamoto
,
K.
,
Yamaguchi
,
K.
, and
Teramoto
,
S.
,
2014
, “
Loss Mechanisms in Shear-Force Pump With Multiple Corotating Disks
,”
ASME J. Fluids Eng.,
136
(
8
), p.
081101
.10.1115/1.4026585
15.
Hasinger
,
S. H.
, and
Kehrt
,
L. G.
,
1963
, “
Investigation of a Shear-Force Pump
,”
ASME J. Eng. Power
,
85
(
3
), pp.
201
206
.10.1115/1.3675258
16.
Breiter
,
M. C.
, and
Pohlhausen
,
K.
,
1962
, “
Laminar Flow Between Two Parallel Rotating Disks
,” Aeronautical Research Laboratories, Wright-Patterson Air Force Base, OH, Report No.
ARL 62-318
.https://apps.dtic.mil/sti/citations/AD0275562#:~:text=Abstract%3A,the%20velocity%20of%20the%20disks
17.
Rice
,
W.
,
2003
, “
Tesla Turbomachinery
,”
Handbook of Turbomachinery
,
Logan
,
E.
, and
Ray
,
R., eds.
,
CRC Press
,
Marcel Dekker, New York
, Chap.
14
.
18.
Couto
,
H. S.
,
Duarte
,
J. B. F.
, and
Bastos-Netto
,
D.
,
2006
, “
The Tesla Turbine Revisited
,”
Proceedings of the Eighth Asia-Pacific International Symposium on Combustion and Energy Utilization
, Sochi, Russian Federation, Oct.
10
12
.http://mtc-m16b.sid.inpe.br/col/sid.inpe.br/mtc-m17@80/2006/12.19.16.10/doc/tesla.pdf
19.
Peshlakai
,
A.
,
2012
, “
Challenging the Versatility of the Tesla Turbine: Working Fluid Variations and Turbine Performance
,”
Master's thesis
,
Arizona State University
, Tempe, AZ.https://keep.lib.asu.edu/_flysystem/fedora/c7/66373/tmp/packageufqfxU/Peshlakai_asu_0010N_12439.pdf
20.
Hoya
,
G. P.
, and
Guha
,
A.
,
2009
, “
The Design of a Test Rig and Study of the Performance and Efficiency of a Tesla Disc Turbine
,”
J. Power Energy
,
223
(
4
), pp.
451
465
.10.1243/09576509JPE664
21.
Crawford
,
M. E.
, and
Rice
,
W.
,
1974
, “
Calculated Design Data for the Multiple-Disk Pump Using Incompressible Fluid
,”
ASME J. Eng. Power
,
96
(
3
), pp.
274
282
.10.1115/1.3445806
22.
Dodsworth
,
L.
, and
Groulx
,
D.
,
2015
, “
Operational Parametric Study of a Tesla Pump: Disk Pack Spacing and Rotational Speed
,”
ASME
Paper No. AJKFluids2015-33220.10.1115/AJKFluids2015-33220
23.
Lampart
,
P.
, and
Jędrzejewski
,
Ł.
,
2011
, “
Investigations of Aerodynamics of Tesla Bladeless Microturbines
,”
J. Theor. Appl. Mech.
,
49
(
2
), pp.
477
499
.http://www.ptmts.org.pl/jtam/index.php/jtam/article/view/v49n2p477
24.
Choon
,
T. W.
,
Rahman
,
A. A.
,
Jer
,
F. S.
, and
Aik
,
L. E.
,
2011
, “
Optimization of Tesla Turbine Using Computational Fluid Dynamics Approach
,”
2011 IEEE Symposium on Industrial Electronics and Applications
, Langkawi, Malaysia, Sept. 25–28, pp.
477
480
.10.1109/ISIEA.2011.6108756
25.
Holland
,
K.
,
2015
, “
Design, Construction and Testing of a Tesla Turbine
,”
M.Sc. thesis
,
Laurentian University
,
Sudbury, ON, Canada
.https://zone.biblio.laurentian.ca/bitstream/10219/2533/1/Final%20Thesis%20Approved%20kris_holland.pdf
26.
Figueira Júnior
,
E. A.
,
de Freitas Oliveira
,
C. H.
,
Borges
,
V. L.
, and
de Carvalho
,
S. R.
,
2021
, “
Design of Bladeless Impellers for Abrasive Fluid Pumping
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
4
), Article No. 225.10.1007/s40430-021-02954-1
27.
Romanin
,
V. D.
,
Krishnan
,
V. G.
,
Carey
,
V. P.
, and
Maharbiz
,
M. M.
,
2012
, “
Experimental and Analytical Study of Sub-Watt Scale Tesla Turbine Performance
,”
ASME
Paper No. IMECE2012-89675.10.1115/IMECE2012-89675
28.
Silvestri
,
P.
,
Traverso
,
A.
,
Reggio
,
F.
, and
Efstathiadis
,
T.
,
2019
, “
Theoretical and Experimental Investigation on Rotor Dynamic Behavior of Bladeless Turbine for Innovative Cycles
,”
ASME
Paper No. GT2019-91708.10.1115/GT2019-91708
29.
Obayashi
,
S.
,
Jeong
,
S.-K.
,
Shimoyama
,
K.
,
Chiba
,
K.
, and
Morino
,
H.
,
2010
, “
Multi-Objective Design Exploration and Its Applications
,”
Int. J. Aeronaut. Space Sci.
,
11
(
4
), pp.
247
265
.10.5139/IJASS.2010.11.4.247
30.
Renuke
,
A.
,
Reggio
,
F.
,
Traverso
,
A.
, and
Pascenti
,
M.
,
2022
, “
Experimental Characterization of Losses in Bladeless Turbine Prototype
,”
ASME J. Eng. Gas Turbines Power
,
144
(
4
), p.
041009
.10.1115/1.4053117
31.
Renuke
,
A.
,
Traverso
,
A.
, and
Pascenti
,
M.
,
2019
, “
Performance Assessment of Bladeless Micro Expanders Using 3D Numerical Simulation
,”
E3S Web Conferences (2019) SUPEHR19 Volume 1
,
113
, p.
03016
.
32.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
33.
Dewar
,
B.
,
Tiainen
,
J.
,
Jaatinen-Värri
,
A.
,
Creamer
,
M.
,
Dotcheva
,
M.
,
Radulovic
,
J.
, and
Buick
,
J. M.
,
2019
, “
CFD Modelling of a Centrifugal Compressor With Experimental Validation Through Radial Diffuser Static Pressure Measurement
,”
Int. J. Rotating Mach.
,
2019
, pp.
1
12
.10.1155/2019/7415263
34.
Gibson
,
L.
,
Galloway
,
L.
,
Kim
,
S. I.
, and
Spence
,
S.
,
2017
, “
Assessment of Turbulence Model Predictions for a Centrifugal Compressor Simulation
,”
J. Global Power Propul. Soc.
,
1
, pp.
142
156
.10.22261/2II890
35.
Rao Konakala
,
S.
, and
Govardhan
,
M.
,
2017
, “
CFD Studies on the Performance of a Centrifugal Compressor With Single Wall Rotating Vaneless Diffusers at the Wall Extension Ratios of 1.1 and 1.15
,”
ASME
Paper No. GTINDIA2017-4625.10.1115/GTINDIA2017-4625
36.
Abo Elyamin
,
G. R. H.
,
Bassily
,
M. A.
,
Khalil
,
K. Y.
, and
Gomaa
,
M. S.
,
2019
, “
Effect of Impeller Blades Number on the Performance of a Centrifugal Pump
,”
Alexandria Eng. J.
,
58
(
1
), pp.
39
48
.10.1016/j.aej.2019.02.004
37.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.10.1115/1.3242450
38.
Moffat
,
R. J.
,
1985
, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
173
178
.10.1115/1.3242452
39.
Renuke
,
A.
,
Traverso
,
A.
, and
Pascenti
,
M.
,
2019
, “
Experimental Campaign Tests on a Tesla Micro Expanders
,”
E3S Web of Conferences Volume 113
, Article No. 03015, SUPEHR19 Volume 1.10.1051/e3sconf/201911303015
40.
Renuke
,
A.
,
Vannoni
,
A.
,
Pascenti
,
M.
, and
Traverso
,
A.
,
2019
, “
Experimental and Numerical Investigation of Small-Scale Tesla Turbines
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121011
.10.1115/1.4044999
You do not currently have access to this content.