A proposed lightweight radiator system for waste heat dissipation in space would eject streams of coolant in the form of small, hot liquid droplets. The droplets would lose radiative energy by direct exposure to the very low-temperature environment of space, and would then be collected for reuse. The cooling behavior of a layer composed of many small droplets was studied by numerical solution of the radiative integral equations. Since there is mutual interference for radiative energy dissipation, an array droplet will cool more slowly than if each drop is exposed individually. Since liquid metal droplets may be used, the study includes results for conditions with high scattering. For optically thin regions, especially with high scattering, the temperature distribution is sufficiently uniform that the cooling can be computed using the approximation of a constant layer emittance. For optically thick layers starting at uniform temperature, the temperature distributions become nonuniform with time. It was found that the cooling process goes through a starting transient; a constant emittance condition is then achieved where the emittance is lower than that for a layer at uniform temperature.

This content is only available via PDF.
You do not currently have access to this content.