Using a 27 percent aqueous ammonium chloride solution as a transparent analog, shadowgraph and dye injection techniques have been employed to observe flow and morphological conditions associated with unidirectional solidification (UDS) from below. Dendritic crystals, which initially form at the cold surface, reject lighter, solute deficient fluid, and the attendant instability is manifested by finger-type double-diffusive convection phenomena. As a two-phase (solid/liquid), or mushy, region grows from the bottom surface, vertical channels develop in the mushy region, and solutal plumes that emanate from the channels are characterized primarily by an ascending, oscillatory motion and secondarily by wisps of fluid, which detach and descend from bends in the plumes. In time, double-diffusive convection layers also form in the melt. From a numerical simulation of the process, it is concluded that the channels originate from perturbations at the liquid interface, which cause localized remelting and create conditions conducive to development of the channels.

This content is only available via PDF.
You do not currently have access to this content.