Results from recently conducted experiments on flame spread over a thin cellulosic fuel in a quiescent, microgravity environment of a 50/50 volumetric mixture of oxygen and nitrogen (oxygen mass fraction 0.53) at three different pressures—101, 152, and 203 kPa (1, 1.5, and 2.0 atm)—are analyzed. The results are compared with established theoretical results and two different computational flame spread models: one that includes gas-phase radiation, and one that does not. The spread rate behavior from experiment, i.e., an increase of spread rate with pressure, is consistent with the theoretical model that includes gas-phase radiation, and side-view photographs of the flames compare favorably with two-dimensional temperature contours produced computationally from the same model. In contrast, neither the dependence of spread rate on pressure nor the flame shape can be predicted with favorable comparison to experiment if radiation is neglected.

1.
Altenkirch
 
R. A.
, and
Bhattacharjee
 
S.
,
1990
, “
Low Gravity Fluid Dynamics and Transport Phenomena
,”
Progress in Astronautics and Aeronautics
, Vol.
130
, pp.
723
740
.
2.
Altenkirch
 
R. A.
,
Eichhorn
 
R.
, and
Shang
 
P. C.
,
1980
,
Combustion and Flame
, Vol.
37
, pp.
71
83
.
3.
Bhattacharjee, S., and Altenkirch, R. A., 1991, Twenty-Third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1627–1633.
4.
Bhattacharjee, S., and Altenkirch, R. A., 1992, Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1669–1676.
5.
Bhattacharjee
 
S.
,
1993
,
Combustion and Flame
, Vol.
93
, pp.
434
444
.
6.
Bhattacharjee
 
S.
,
Altenkirch
 
R. A.
, and
Sacksteder
 
K.
,
1993
,
Combustion Science and Technology
, Vol.
91
, pp.
225
231
.
7.
Bhattacharjee
 
S.
,
Altenkirch
 
R. A.
,
Olson
 
S. L.
, and
Sotos
 
R. G.
,
1994
a,
ASME JOURNAL OF HEAT TRANSFER
, Vol.
113
, pp.
670
676
.
8.
Bhattacharjee
 
S.
,
Bhaskaran
 
K. K.
, and
Altenkirch
 
R. A.
,
1994
b,
Combustion Science and Technology
, Vol.
100
, pp.
163
183
.
9.
Bhattacharjee, S., West, J., and Dockter, S., 1995, “A Simplified Theory for de Ris Flame over Thin and Thick Fuels,” Combustion and Flame, to appear.
10.
de Ris, J. N., 1969, Twelfth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, p. 241–252.
11.
Delichatsios
 
M. A.
,
1986
,
Combustion Science and Technology
, Vol.
44
, pp.
257
267
.
12.
Fernandez-Pello, A. C., Ray, S. R., and Glassman, I., 1981, Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 579–587.
13.
Kanury, M., 1977, Introduction to Combustion Phenomenon, Gordon and Breach Science Publishers, New York.
14.
Lastrina, F. A., Magee, R. S., and McAlevy, R. F., 1971, Thirteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 935–948; comments by J. N. de Ris.
15.
Ramachandra
 
P. A.
,
Altenkirch
 
R. A.
,
Bhattacharjee
 
S.
,
Tang
 
L.
,
Sacksteder
 
K.
, and
Wolverton
 
M. K.
,
1995
,
Combustion and Flame
, Vol.
100
, pp.
71
84
.
16.
Wichman
 
I. S.
, and
Williams
 
F. A.
,
1983
,
Combustion Science and Technology
, Vol.
32
, pp.
91
123
.
17.
Williams, F. A., 1976, Sixteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1281–1294.
This content is only available via PDF.
You do not currently have access to this content.