Numerical analysis and experimental measurements of the flattening degree of plasma sprayed molybdenum and zirconia droplets deposited on different substrate materials are presented. Investigation is focused on the influence of rate of solidification and wetting angle on droplet spreading. Madejski-Zhang model with one-dimensional treatment of solidification as well as heat transfer in the melt, solidified splat and substrate is employed to perform a numerical analysis. A parametric study is conducted to examine the effects of droplet size, impact velocity, superheating of droplets, substrate temperature, thermal contact resistance, and wetting angle on spreading of the splat and its flattening degree. Numerical results show that the time for solidification can be as small as that for spreading and the rate of solidification can greatly influence the flattening degree. A guideline for when the effect of wetting angle and surface tension on droplet deformation can be neglected is derived. A correlation for the relationship between the flattening degree and Reynolds number with the consideration of solidification is deduced, and a criterion for the effect of droplet solidification on impact dynamics to be negligible is given. The limitations of the assumption of isothermal substrate are also discussed. The numerical predictions agree statistically well with the experimental data.

1.
Moreau
,
C.
,
Gougeon
,
P.
, and
Lamontagne
,
M.
,
1995
, “
Influence of Substrate Preparation on the Flattening and Cooling of Plasma-Sprayed Particles
,”
J. Thermal Spray Technol.
,
4
, pp.
25
33
.
2.
Madejski
,
J.
,
1976
, “
Solidification of Droplets on a Cold Surface
,”
Int. J. Heat Mass Transf.
,
19
, pp.
1009
1013
.
3.
Vardelle
,
M.
,
Vardelle
,
A.
,
Legaer
,
A. C.
,
Fauchais
,
P.
, and
Gobin
,
D.
,
1994
, “
Influence of Particle Parameters at Impact on Splat Formation and Solidification in Plasma Spraying Processes
,”
J. Thermal Spray Technol.
,
4
, pp.
50
58
.
4.
Jiang, X., and Sampath, S., 1998, “Effect of Substrate Condition on Splat Formation During Thermal Spray Deposition,” Solidification 1998, S. P. Marsh et al., eds., The Minerals, Metals & Materials Society, pp. 439–448.
5.
Watanabe
,
T.
,
Kurbayashi
,
I
,
Honda
,
T.
, and
Kanzawa
,
A.
,
1992
, “
Deformation and Solidification of a Droplet on a Cold Substrate
,”
Chem. Eng. Sci.
,
47
, pp.
3059
3065
.
6.
Fukanuma, H., and Ohmori, A., 1994, “Behavior of Molten Droplets Impinging on Flat Surfaces,” Proc. 7th National Thermal Spray Conf., pp. 563–568.
7.
Schiaffino
,
S.
, and
Sonin
,
A. A.
,
1997
, “
Molten Droplet Deposition and Solidification at Low Weber Numbers
,”
Phys. Fluids
,
9
, No.
11
, pp.
3172
3187
.
8.
Pasandideh-Fard
,
M.
,
Bhola
,
R.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
1998
, “
Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments
,”
Int. J. Heat Mass Transf.
,
41
, pp.
2929
2945
.
9.
Inada
,
S.
,
1988
, “
Transient Heat Transfer from a Free-falling Molten Drop of Lead to a Cold Plate
,”
J. Chem. Eng. Jpn.
,
21
, pp.
582
588
.
10.
Liu
,
W.
,
Wang
,
G. X.
, and
Matthys
,
E. F.
,
1995
, “
Thermal Analysis and Measurements for a Molten Metal Drop Impacting on a Substrate: Cooling, Solidification and Heat Transfer Coefficients
,”
Int. J. Heat Mass Transf.
,
38
, pp.
1387
1395
.
11.
Rangel, R. H., and Bian, X., 1996, “A Metal-Droplet deformation and Solidification Model with Substrate Remelting,” HTD-Vol. 336/FED-Vol. 240, Transport Phenomena in Materials Processing and Manufacturing, ASME, New York, pp. 265–273.
12.
Zhang
,
H.
,
1999
, “
Theoretical Analysis of Spreading and Solidification of Molten Droplet During Thermal Spray Deposition
,”
Int. J. Heat Mass Transf.
,
42
, pp.
2499
2508
.
13.
Trapaga
,
G.
, and
Szekely
,
J.
,
1991
, “
Mathematical Modeling of the Isothermal Impingement of Liquid Droplets in Spraying Processes
,”
Metall. Trans. B
,
22B
, pp.
901
914
.
14.
Liu
,
H.
,
Lavernia
,
E. J.
, and
Rangel
,
R. H.
,
1993
, “
Numerical Simulation of Substrate Impact and Freezing of Droplets in Plasma Spray Processes
,”
J. Phys. D
,
26
, pp.
1900
1908
.
15.
Waldvogel
,
J. M.
, and
Poulikakos
,
D.
,
1997
, “
Solidification Phenomena in Picoliter Size Solder Droplet Deposition on a Composite Substrate
,”
Int. J. Heat Mass Transf.
,
40
, No.
2
, pp.
295
309
.
16.
Jones
,
H.
,
1971
, “
Cooling, Freezing and Substrate Impact of Droplets Formed by Rotary Atomization
,”
J. Phys. D
,
4
, pp.
1657
1660
.
17.
Bertagnolli
,
M.
,
Marchese
,
M.
, and
Jacucci
,
G.
,
1995
, “
Modeling of Particles Impacting on a Rigid Substrate under Plasma Spraying Conditions
,”
J. Thermal Spray Technol.
,
4
, pp.
41
49
.
18.
Dykhuizen
,
R. C.
,
1994
, “
Review of Impact and Solidification of Molten Thermal Spray Droplets
,”
J. Thermal Spray Technol.
,
3
, pp.
351
361
.
19.
Markworth
,
A. J.
, and
Saunders
,
J. H.
,
1992
, “
An Improved Velocity Field for the Madejski Splat-Quench Solidification Model
,”
Int. J. Heat Mass Transf.
,
35
, No.
7
, pp.
1836
1837
.
20.
Chapra, S. C., and Canale, R. P., 1998, Numerical Methods for Engineers: With Programming and Software Applications, 3rd Ed., McGraw-Hill, New York.
21.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York.
22.
Wan
,
Y. P.
,
Prasad
,
V.
,
Wang
,
G.-X.
,
Sampath
,
S.
, and
Fincke
,
J. R.
,
1999
, “
Model of Powder Particle Heating, Melting, Resolidification, and Evaporation on Plasma Spraying Processes
,”
ASME J. Heat Transfer
,
121
, pp.
691
699
.
23.
Beer, S. Z., Ed., 1972, Liquid Metals, Chemistry and Physics, Marcel Dekker, New York.
24.
Bansal, N. P., and Doremus, R. H., 1986, Handbook of Glass Properties, Academic Press, New York.
25.
Trapaga
,
G.
,
Matthys
,
E. F.
,
Valencia
,
J. J.
, and
Szekely
,
J.
,
1992
, “
Fluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Impinging on Substrates: Comparison of Numerical and Experimental Results
,”
Metall. Trans. B
,
23B
, pp.
701
718
.
You do not currently have access to this content.