This paper focuses on the effect that surface tension (Marangoni phenomenon) and viscosity dependence on temperature has on the spreading, transient behavior and final post-solidification shape of a molten Sn63Pb solder droplet deposited on a flat substrate. A Lagrangian finite element formulation of the complete axisymmetric Navier-Stokes equations is utilized for the description of the droplet behavior. Linear temperature dependence for the surface tension and an exponential dependence for the viscosity are assumed. The initial droplet temperature is varied in 50 K steps from 200°C to 500°C, whereas the substrate temperature is kept constant at 25°C. This varies the initial Reynolds number Re0 from 360 to 716 and the Marangoni number Ma from −9 to −49. The initial Weber number We0 and initial Prandtl number Pr0 are for all cases O(1) and O102, respectively. The impact velocity and the droplet diameter remain unchanged in all cases examined at 1.5 m/s and 80 microns. A major finding of the work is that, contrary to intuition, the Marangoni effect decreased droplet spreading monotonically. Due to the Marangoni effect, the mechanism that arrested spreading is the surface tension and not the beginning of freezing. Droplet receding during recoiling was aided by the Marangoni effect. On the other hand, the change of viscosity with temperature showed no significant influence on the outcome of the droplet impact.

1.
Maronnier
,
V.
,
Picasso
,
M.
, and
Rappaz
,
J.
,
1999
, “
Numerical Simulation of Free Surface Flows
,”
J. Comput. Phys.
,
155
(
2
), pp.
439
455
.
2.
Attinger
,
D.
,
Zhao
,
Z.
, and
Poulikakos
,
D.
,
2000
, “
An Experimental Study of Molten Microdroplet Surface Deposition and Solidification: Transient Behavior and Wetting Angle Dynamics
,”
Journal of Heat Transfer—Transactions of the Asme
,
122
(
3
), pp.
544
556
.
3.
Haferl
,
S.
,
Butty
,
V.
,
Poulikakos
,
D.
,
Giannakouros
,
J.
,
Boomsma
,
K.
,
Megaridis
,
C. M.
, and
Nayagam
,
V.
,
2001
, “
Freezing Dynamics of Molten Solder Droplets Impacting onto Flat Substrates in Reduced Gravity
,”
Int. J. Heat Mass Transf.
,
44
(
18
), pp.
3513
3528
.
4.
Monti
,
R.
,
Savino
,
R.
, and
Tempesta
,
S.
,
1998
, “
Wetting Prevention by Thermal Marangoni Effect. Experimental and Numerical Simulation
,”
Eur. J. Mech. B/Fluids
,
17
(
1
), pp.
51
77
.
5.
Cao
,
C. D.
,
Wang
,
N.
,
Wei
,
B. B.
, and
de Groh
,
H. C.
,
1999
, “
Rapid Solidification of Ag-Si Eutectic Alloys in Drop Tube
,”
Prog. Nat. Sci.
,
9
(
9
), pp.
687
695
.
6.
Khodadadi
,
J. M.
, and
Zhang
,
Y.
,
2000
, “
Effects of Thermocapillary Convection on Melting within Droplets
,”
Numer. Heat Transfer, Part A
,
37
(
2
), pp.
133
153
.
7.
Song
,
S. P.
, and
Li
,
B. Q.
,
2000
, “
Free Surface Profiles and Thermal Convection in Electrostatically Levitated Droplets
,”
Int. J. Heat Mass Transf.
,
43
(
19
), pp.
3589
3606
.
8.
Ehrhard
,
P.
, and
Davis
,
S. H.
,
1991
, “
Nonisothermal Spreading of Liquid-Drops on Horizontal Plates
,”
J. Fluid Mech.
,
229
, pp.
365
388
.
9.
Braun
,
R. J.
,
Murray
,
B. T.
,
Boettinger
,
W. J.
, and
McFadden
,
G. B.
,
1995
, “
Lubrication Theory for Reactive Spreading of a Thin Drop
,”
Phys. Fluids
,
7
(
8
), pp.
1797
1810
.
10.
Waldvogel
,
J. M.
, and
Poulikakos
,
D.
,
1997
, “
Solidification Phenomena in Picoliter Size Solder Droplet Deposition on a Composite Substrate
,”
Int. J. Heat Mass Transf.
,
40
(
2
), pp.
295
309
.
11.
den Boer, A. W. J. P., 1996, “Marangoni Convection: Numerical Model and Experiments,” doctoral thesis, Technische Universiteit Eindhoven, Eindhoven.
12.
Fowler
,
R. H.
,
1937
, “
A Tentative Statistical Theory of Macleod’s Equation for Surface Tension, and the Parachor
,”
Proc. R. Soc. London, Ser. A: Mathematical Physical and Engineering Sciences
, ,
A159
(
896
), pp.
229
246
.
13.
Jasper
,
J. J.
,
1972
, “
The Surface Tension of Pure Liquid Compounds
,”
J. Phys. Chem. Ref. Data
,
1
(
4
), pp.
841
1009
.
14.
Born
,
M.
, and
Green
,
H. S.
,
1947
, “
A General Kinetic Theory of Liquids
,”
Proc. R. Soc. London, Ser. A: Mathematical Physical and Engineering Sciences
, ,
190
(
1020
), pp.
455
474
.
15.
Egry
,
I.
,
1993
, “
On the Relation between Surface-Tension and Viscosity for Liquid-Metals
,”
Scr. Metall. Mater.
,
28
(
10
), pp.
1273
1276
.
16.
Koke, J., 2001, “Rheologie Teilerstarrter Metalllegierunger,” doctoral thesis, RWTH Aachen, Aachen.
17.
Thresh
,
H. R.
, and
Crawley
,
A. F.
,
1970
, “
The Viscosities of Lead, Tin and Pb-Sn Alloys
,”
Metall. Trans.
,
1
, pp.
1531
1535
.
18.
Keene
,
B. J.
,
1993
, “
Review of Data for the Surface-Tension of Pure Metals
,”
Int. Mater. Rev.
,
38
(
4
), pp.
157
192
.
19.
Schwaneke
,
A. E.
,
Falke
,
W. L.
, and
Miller
,
V. R.
,
1978
, “
Surface-Tension and Density of Liquid Tin-Lead Solder Alloys
,”
J. Chem. Eng. Data
,
23
(
4
), pp.
298
301
.
20.
White
,
D. W. G.
,
1971
, “
Surface Tensions of Pb, Sn, and Pb-Sn Alloys
,”
Metall. Trans.
,
2
(
11
), pp.
3067
3071
.
21.
NIST, 2001, “Properties of Solder,” http://www.boulder.nist.gov/div853/lead%20free/part2.html#%202.2.5.
22.
Carroll
,
M. A.
, and
Warwick
,
M. E.
,
1987
, “
Surface-Tension of Some Sn-Pb Alloys.1. Effect of Bi, Sb, P, Ag, and Cu on 60sn-40pb Solder
,”
Mater. Sci. Technol.
,
3
(
12
), pp.
1040
1045
.
23.
Landau, L. D., and Lifshitz, E. M., 1959, Fluid Mechanics, Pergamon Press, Oxford; New York, 6, pp. 238–241.
24.
Baer
,
T. A.
,
Cairncross
,
R. A.
,
Schunk
,
P. R.
,
Rao
,
R. R.
, and
Sackinger
,
P. A.
,
2000
, “
A Finite Element Method for Free Surface Flows of Incompressible Fluids in Three Dimensions. Part Ii. Dynamic Wetting Lines
,”
Int. J. Numer. Methods Fluids
,
33
(
3
), pp.
405
427
.
25.
Bushko
,
W.
, and
Grosse
,
I. R.
,
1991
, “
New Finite-Element Method for Multidimensional Phase-Change Heat-Transfer Problems
,”
Numer. Heat Transfer, Part B
,
19
(
1
), pp.
31
48
.
26.
Arafune
,
K.
,
Sugiura
,
M.
, and
Hirata
,
A.
,
1999
, “
Investigation of Thermal Marangoni Convection in Low and High- Prandtl-Number Fluids
,”
J. Chem. Eng. Jpn.
,
32
(
1
), pp.
104
109
.
27.
Bach
,
P.
, and
Hassager
,
O.
,
1985
, “
An Algorithm for the Use of the Lagrangian Specification in Newtonian Fluid-Mechanics and Applications to Free-Surface Flow
,”
J. Fluid Mech.
,
152
, pp.
173
190
.
You do not currently have access to this content.