The aim of this study is to present a novel inverse heat transfer method, which incorporates an automatic-filter scheme with the conjugate gradient method, for identifying shapes and temperatures of heating elements embedded in a rectangular package. In this report, shapes of the heating elements are visualized by using node-matrix images. A group of unknown heating elements with different shapes, positions, and temperatures are nondestructively identified simply based on the data of the upper surface temperature of the rectangular package. Effects of temperature measurement uncertainty, grid size, and number of measurement points on the top surface on the identification accuracy are evaluated. Results show that the geometric and thermal conditions of the embedded heating elements can be predicted precisely by using the present approach. The approach is found to be stable and insensitive to the temperature measurement uncertainty, and, without overwhelming mathematical manipulation, the form of objective function becomes flexible.

1.
Beck
,
J. V.
, and
Arnold
,
K. J.
, 1977,
Parameter Estimation in Engineering and Science
,
Willey
, NY.
2.
Matsevity
,
Y. M
, and
Moultanovsky
,
A. V.
, 1984, “
Statistical Identification of Local Heat Transfer Parameters
,”
J. Eng. Phys.
0022-0841,
45
, pp.
1298
1300
.
3.
Alifanov
,
O. M.
,
Inverse Heat Transfer Problems
, 1994,
Springler-Verlag
, NY.
4.
Huang
,
C. H.
, and
Chen
,
C. W.
, 1998, “
A Boundary-Element-Based Inverse Problem of Estimating Boundary Conditions in an Irregular Domain With Statistical Analysis
,”
Numer. Heat Transfer, Part B
1040-7790,
33
, pp.
251
268
.
5.
Prud’homme
,
M.
, and
Nguyen
,
T. H.
, 1998, “
On the Iterative Regularization of Inverse Heat Conduction Problems by Conjugate Gradient Method
,”
Int. Commun. Heat Mass Transfer
0735-1933,
25
, pp.
999
1008
.
6.
Liu
,
G. R.
,
Zhou
,
J. J.
, and
Wang
,
J. G.
, 2002, “
Coefficients Identification in Electronic System Cooling Simulation Through Genetic Algorithm
,”
Comput. Struct.
0045-7949,
80
, pp.
23
30
.
7.
Alifanov
,
O. M.
,
Balakovsky
,
S. L.
, and
Klibanov
,
M. V.
, 1987, “
The Recovery of Causal Characteristics of the Heat Conduction Process From a Solution of the Combined Inverse Problem
,”
J. Eng. Phys.
0022-0841,
52
, pp.
839
843
.
8.
Tervola
,
P.
, 1989, “
A Method to Determine the Thermal Conductivity From Measured Temperature Profiles
,”
Int. J. Heat Mass Transfer
0017-9310,
32
, pp.
1425
1430
.
9.
Flach
,
G. P.
, and
Ozisik
,
M. N.
, 1989, “
Inverse Heat Conduction Problem of Simultaneously Estimating Spatially Varying Thermal Conductivity and Heat Capacity Per Unit Volume
,”
Numer. Heat Transfer, Part A
1040-7782,
16
, pp.
249
266
.
10.
Moultanovsky
,
A. V.
, and
Rekada
,
M.
, 2002, “
Inverse Heat Conduction Problem Approach to Identify the Thermal Characteristics of Super-Hard Synthetic Materials
,”
Inverse Probl. Eng.
1068-2767,
10
, pp.
19
41
.
11.
Kennon
,
S. R.
, and
Dulikravich
,
G. S.
, 1985, “
The Inverse Design of Internally Cooled Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
123
126
.
12.
Dulikravich
,
G. S.
, 1992, “
Inverse Design of Proper Number, Shapes, Sizes and Locations of Coolant Flow Passages
,”
Proc. of 10th Annual Workshop for Computational Fluid Dynamics Applications in Rocket Propulsion
,
R. W.
Williams
, ed.,
NASA MSFC
, Huntsville, AL, NASA CP-3163, Part 1, pp.
467
486
.
13.
Fabbri
,
G.
, 1997, “
A Genetic Algorithm for Fin Profile Optimization
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
2165
2172
.
14.
Cheng
,
C. H.
, and
Wu
,
C. Y.
, 2000, “
An Approach Combining Body-Fitted Grid Generation and Conjugate Gradient Methods for Shape Design in Heat Conduction Problems
,”
Numer. Heat Transfer, Part B
1040-7790,
37
, pp.
69
83
.
15.
Cheng
,
C. H.
, and
Chang
,
M. H.
, 2003, “
Shape Design for a Cylinder with Uniform Temperature Distribution on the Outer Surface by Inverse Heat Transfer Method
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
101
111
.
16.
Matsevity
,
Y. M.
,
Moultanovsky
,
A. V.
, and
Nemirovsky
,
I. A.
, 1991, “
Optimization of Heat Engineering Processes Involving Utilization of Control and Identification Methods
,”
J. Eng. Phys.
0022-0841,
59
, pp.
1055
1063
.
17.
Huang
,
C. H.
, and
Chao
,
B. H.
, 1997, “
An Inverse Geometry Problem in Identifying Irregular Boundary Configurations
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
2045
2053
.
18.
Cheng
,
C. H.
, and
Chang
,
M. H.
, 2003, “
Shape Identification by Inverse Heat Transfer Method
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
224
231
.
19.
Park
,
H. M.
, and
Shin
,
H. J.
, 2003, “
Shape Identification for Natural Convection Problems Using the Adjoint Variable Method
,”
J. Comput. Phys.
0021-9991,
186
, pp.
198
211
.
20.
dos Santos
,
J. V. Araújo
,
Soares
,
C. M. Mota
,
Soares
,
C. A. Mota
, and
Pina
,
H. L. G.
, 2000, “
Development of a Numerical Model for the Damage Identification on Composite Plate Structures
,”
Compos. Struct.
0263-8223,
48
, pp.
59
65
.
21.
Burczynski
,
T.
, and
Beluch
,
W.
, 2001, “
The Identification of Cracks Using Boundary Elements and Evolutionary Algorithms
,”
Eng. Anal. Boundary Elem.
0955-7997,
25
, pp.
313
322
.
22.
Le Niliot
,
C.
, 1998, “
The Boundary Element Method for the Time Varying Strength Estimation of Point Heat Sources: Application to a Two-Dimensional Diffusion System
,
Numer. Heat Transfer, Part B
1040-7790,
33
, pp.
301
321
.
23.
Lefévre
,
F.
, and
Le Niliot
,
C.
, 2002, “
The BEM for Point Heat Source Estimation: Application to Multiple Static
,”
Int. J. Therm. Sci.
1290-0729,
41
, pp.
536
-
545
.
24.
Le Niliot
,
C.
, and
Lefévre
,
F.
, 2004, “
A Parameter Estimation Approach to Solve the Inverse Problem of Point Heat Sources Identification
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
827
841
.
25.
Lee
,
H. S.
,
Park
,
C. J.
, and
Park
,
H. W.
, 2000, “
Identification of Geometric Shapes and Material Properties of Inclusions in Two-Dimensional Finite Bodies by Boundary Parameterization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
181
, pp.
1
20
.
26.
Abou Khachfe
,
R.
, and
Jarny
,
Y.
, 2001, “
Determination of Heat Sources and Heat Transfer Coefficient for Two-Dimensional Heat Flow—Numerical and Experimental Study
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1309
1322
.
27.
Moin
,
P.
, 2001,
Fundamentals of Engineering Numerical Analysis
,
Cambridge University Press
, NY.
28.
Alifanov
,
O. M.
,
Artyukhin
,
E. A.
, and
Rumyantsev
,
S. V.
, 1995,
Extreme Methods for Solving Ill-Posed Problems With Applications to Inverse Problems
,
Begell House
, Wallingfold, UK.
You do not currently have access to this content.