Interfacial heat transfer coefficients in a porous medium modeled as a staggered array of square rods are numerically determined. High and low Reynolds k-ϵ turbulence models are used in conjunction of a two-energy equation model, which includes distinct transport equations for the fluid and the solid phases. The literature has documented proposals for macroscopic energy equation modeling for porous media considering the local thermal equilibrium hypothesis and laminar flow. In addition, two-energy equation models have been proposed for conduction and laminar convection in packed beds. With the aim of contributing to new developments, this work treats turbulent heat transport modeling in porous media under the local thermal nonequilibrium assumption. Macroscopic time-average equations for continuity, momentum, and energy are presented based on the recently established double decomposition concept (spatial deviations and temporal fluctuations of flow properties). The numerical technique employed for discretizing the governing equations is the control volume method. Turbulent flow results for the macroscopic heat transfer coefficient, between the fluid and solid phase in a periodic cell, are presented.

1.
Schumann
,
T. E. W.
, 1929, “
Heat Transfer: Liquid Flowing Through a Porous Prism
,”
J. Franklin Inst.
0016-0032,
208
, pp.
405
416
.
2.
Quintard
,
M.
, 1998, “
Modeling Local Non-Equilibrium Heat Transfer in Porous Media
,” in
Proc. 11th Int. Heat Transfer Conf.
,
Kyongyu
, Korea, Vol.
1
, pp.
279
285
.
3.
Kuznetsov
,
A. V.
, 1998, “
Thermal Nonequilibrium Forced Convection in Porous Media
,” Chap. 5 in
Transport Phenomena in Porous Media
,
D. B.
Ingham
and
I.
Pop
, eds.,
Elsevier
,
Oxford
, pp.
103
129
.
4.
Kaviany
,
M.
, 1995,
Principles of Heat Transfer in Porous Media
, 2nd ed.,
Springer
, New York.
5.
Quintard
,
M.
,
Kaviany
,
M.
, and
Whitaker
,
S.
, 1997, “
Two-Medium Treatment of Heat Transfer in Porous Media: Numerical Results for Effective Properties
,”
Adv. Water Resour.
0309-1708,
20
, pp.
77
94
.
6.
Ochoa-Tapia
,
J. A.
, and
Whitaker
,
S.
, 1997, “
Heat Transfer at the Boundary Between a Porous Medium and a Homogeneous Fluid
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
2691
2707
.
7.
Kuwahara
,
F.
,
Shirota
,
M.
, and
Nakayama
,
A.
, 2001, “
A Numerical Study of Interfacial Convective Heat Transfer Coefficient in Two-Energy Equation Model for Convection in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1153
1159
.
8.
Nakayama
,
A.
,
Kuwahara
,
F.
,
Sugiyama
,
M.
, and
Xu
,
G.
, 2001, “
A Two-Energy Equation Model for Conduction and Convection in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
4375
4379
.
9.
Hsu
,
C. T.
, 1999, “
A Closure Model for Transient Heat Conduction in Porous Media
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
733
739
.
10.
Nield
,
D. A.
, and
Bejan
,
A.
, 1992,
Convection in Porous Media
,
Springer
, New York.
11.
Bear
,
J.
, 1972,
Dynamics of Fluids in Porous Media
,
American Elsevier
, New York.
12.
Sahraouri
,
M.
, and
Kaviany
,
M.
, 1994, “
Direct Simulation Versus Volume-Averaged Treatment of Adiabatic, Premixed Flame in a Porous Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
18
), pp.
2817
2834
.
13.
Saito
,
M. B.
, and
de Lemos
,
M. J. S.
, 2005, “
Interfacial Heat Transfer Coefficient for NonEquilibrium Convective Transport in Porous Media
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
(
5
), pp.
667
677
.
14.
Gray
,
W. G.
, and
Lee
,
P. C. Y.
, 1977, “
On the Theorems for Local Volume Averaging of Multiphase System
,”
Int. J. Multiphase Flow
0301-9322,
3
, pp.
333
340
.
15.
Pedras
,
M. H. J.
, and
de Lemos
,
M. J. S.
, 2000, “
On the Definition of Turbulent Kinetic Energy for Flow in Porous Media
,”
Int. Commun. Heat Mass Transfer
0735-1933,
27
(
2
), pp.
211
220
.
16.
Pedras
,
M. H. J.
, and
de Lemos
,
M. J. S.
, 2001, “
Macroscopic Turbulence Modeling for Incompressible Flow Through Undeformable Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
44
(
6
), pp.
1081
1093
.
17.
Pedras
,
M. H. J.
, and
de Lemos
,
M. J. S.
, 2001, “
Simulation of Turbulent Flow in Porous Media Using a Spatially Periodic Array and a Low-Re Two-Equation Closure
,”
Numer. Heat Transfer, Part A
1040-7782,
39
(
1
), pp.
35
59
.
18.
Pedras
,
M. H. J.
, and
de Lemos
,
M. J. S.
, 2001, “
On the Mathematical Description and Simulation of Turbulent Flow in a Porous Medium Formed by an Array of Elliptic Rods
,”
J. Fluids Eng.
0098-2202,
123
(
4
), pp.
941
947
.
19.
Pedras
,
M. H. J.
, and
de Lemos
,
M. J. S.
, 2003, “
Computation of Turbulent Flow in Porous Media Using a Low Reynolds k-ϵ Model and an Infinite Array of Transversally-Displaced Elliptic Rods
,”
Numer. Heat Transfer, Part A
1040-7782,
43
(
6
), pp.
585
602
.
20.
Rocamora
,
F. D.
Jr.
, and
de Lemos
,
M. J. S.
, 2000, “
Analysis of Convective Heat Transfer of Turbulent Flow in Saturated Porous Media
,”
Int. Commun. Heat Mass Transfer
0735-1933,
27
(
6
), pp.
825
834
.
21.
de Lemos
,
M. J. S.
, and
Braga
,
E. J.
, 2003, “
Modeling of Turbulent Natural Convection in Saturated Rigid Porous Media
,”
Int. Commun. Heat Mass Transfer
0735-1933,
30
(
5
), pp.
615
624
.
22.
Braga
,
E. J.
, and
de Lemos
,
M. J. S.
, 2004, “
Turbulent Natural Convection in a Porous Square Cavity Computed with a Macroscopic k-ϵ Model
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
26
), pp.
5639
5650
.
23.
Braga
,
E. J.
, and
de Lemos
,
M. J. S.
, 2005, “
Heat Transfer in Enclosures Having a Fixed Amount of Solid Material Simulated with Heterogeneous and Homogeneous Models
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
23-24
), pp.
4748
4765
.
24.
Braga
,
E. J.
, and
de Lemos
,
M. J. S.
, 2000, “
Laminar Natural Convection in Cavities Filled with Circular and Square Rods
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
(
10
), pp.
1289
1297
.
25.
de Lemos
,
M. J. S.
, and
Mesquita
,
M. S.
, 2003, “
Turbulent Mass Transport in Saturated Rigid Porous Media
,”
Int. Commun. Heat Mass Transfer
0735-1933,
30
(
1
), pp.
105
113
.
26.
de Lemos
,
M. J. S.
, and
Tofaneli
,
L. A.
, 2004, “
Modeling of Double-Diffusive Turbulent Natural Convection in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
19-20
), pp.
4221
4231
.
27.
de Lemos
,
M. J. S.
, and
Pedras
,
M. H. J.
, 2001, “
Recent Mathematical Models for Turbulent Flow for Saturated Rigid Porous Media
,”
J. Fluids Eng.
0098-2202,
123
(
4
), pp.
935
940
.
28.
Silva
,
R. A.
, and
de Lemos
,
M. J. S.
, 2003, “
Numerical Analysis of the Stress Jump Interface Condition for Laminar Flow over a Porous Layer
,”
Numer. Heat Transfer, Part A
1040-7782,
43
(
6
), pp.
603
617
.
29.
Silva
,
R. A.
, and
de Lemos
,
M. J. S.
, 2003, “
Turbulent Flow in a Channel Occupied by a Porous Layer Considering the Stress Jump at the Interface
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
26
), pp.
5113
5121
.
30.
de Lemos
,
M. J. S.
, 2005, “
Turbulent Kinetic Energy Distribution Across the Interface Between a Porous Medium and a Clear Region
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
(
1-2
), pp.
107
115
.
31.
de Lemos
,
M. J. S.
, and
Silva
,
R. A.
, 2006, “
Turbulent Flow Over A Layer Of A Highly Permeable Medium Simulated With A Diffusion-Jump Model For The Interface
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
3-4
), pp.
546
556
.
32.
de Lemos
,
M. J. S.
, and
Rocamora
,
F. D.
, 2002, “
Turbulent Transport Modeling for Heated Flow in Rigid Porous Media
, in
Proceedings of the Twelfth International Heat Transfer Conference
,
Grenoble
, France, August 18–23, pp.
791
795
.
33.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1974, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
3
, pp.
269
289
.
34.
Hsu
,
C. T.
, and
Cheng
,
P.
, 1990, “
Thermal Dispersion in a Porous Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
1587
1597
.
35.
Whitaker
,
S.
, 1966, “
Equations of Motion in Porous Media
,”
Chem. Eng. Sci.
0009-2509,
21
, pp.
291
300
.
36.
Whitaker
,
S.
, 1967, “
Diffusion and Dispersion in Porous Media
,”
AIChE J.
0001-1541,
13
(
3
), pp.
420
427
.
37.
Masuoka
,
T.
, and
Takatsu
,
Y.
, 1996, “
Turbulence Model for Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
13
), pp.
2803
2809
.
38.
Kuwahara
,
F.
,
Nakayama
,
A.
, and
Koyama
,
H.
, 1996, “
A Numerical Study of Thermal Dispersion in Porous Media
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
756
761
.
39.
Kuwahara
,
F.
, and
Nakayama
,
A.
, 1998, “
Numerical Modeling of Non-Darcy Convective Flow in a Porous Medium
,
Heat Transfer 1998, Proceedings of the 11th Int. Heat Transf. Conf.
,
Kyongyu
, Korea, Taylor and Francis, Washington, D.C., Vol.
4
, pp.
411
416
.
40.
Kuwahara
,
F.
,
Kameyama
,
Y.
Yamashita
,
S.
and
Nakayama
,
A.
, 1998, “
Numerical Modeling of Turbulent Flow in Porous Media Using a Spatially Periodic Array
,”
J. Porous Media
1091-028X,
1
(
1
), pp.
47
55
.
41.
Ergun
,
S.
, 1952, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
0360-7275,
48
, pp.
89
94
.
42.
Nakayama
,
A.
, and
Kuwahara
,
F.
, 1999, “
A Macroscopic Turbulence Model for Flow in a Porous Medium
,”
J. Fluids Eng.
0098-2202,
121
, pp.
427
433
.
43.
Lee
,
K.
, and
Howell
,
J. R.
, 1987, “
Forced Convective and Radiative Transfer Within a Highly Porous Layer Exposed to a Turbulent External Flow Field
,” in
Proceedings of the 1987 ASME-JSME Thermal Engineering Joint Conf.
,
Honolulu
, Hawaii, ASME, New York, Vol.
2
, pp.
377
386
.
44.
Antohe
,
B. V.
, and
Lage
,
J. L.
, 1997, “
A General Two-Equation Macroscopic Turbulence Model for Incompressible Flow in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
13
), pp.
3013
3024
.
45.
Getachewa
,
D.
,
Minkowycz
,
W. J.
, and
Lage
,
J. L.
, 2000, “
A Modified Form of the k-ϵ Model for Turbulent Flow of a Incompressible Fluid in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2909
2915
.
46.
Slattery
,
J. C.
, 1967, “
Flow of Viscoelastic Fluids Through Porous Media
,”
AIChE J.
0001-1541,
13
, pp.
1066
1071
.
47.
Forchheimer
,
P.
, 1901, “
Wasserbewegung durch Boden
,”
Z. Ver. Deutsch. Ing.
,
45
, pp.
1782
1788
.
48.
Wakao
,
N.
,
Kaguei
,
S.
, and
Funazkri
,
T.
, 1979, “
Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Bed
,”
Chem. Eng. Sci.
0009-2509,
34
, pp.
325
336
.
49.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
, Washington, D.C.
50.
Zhukauskas
,
A.
, 1972, “
Heat Transfer from Tubes in Cross Flow
,”
Adv. Heat Transfer
0065-2717,
8
, pp.
93
160
.
You do not currently have access to this content.