Lightweight yet precise, temperature control protocols are critical in a variety of applications. This is especially true in space where weight and volume are at a premium and reliability is paramount. In space, complex processes to manage the heat fluxes generated from within and absorbed from space by the spacecraft are usually implemented. Surfaces having different heat fluxes might need to be controlled separately and maintained at different temperatures. The work presented in this paper evaluates a novel laser surface modification process to form micro-column arrays (MCA) on any material for use as highly adaptive radiators. The MCA-structured surfaces have experimentally been shown to have excellent emissive properties. Finite element methods have been used to simulate the temperature profiles for surfaces with and without MCA compared to pin fin structures as a function of input heat flux density. In the case of Ti, our models show that pin fin arrays are better heat radiating surfaces than equivalent MCA structures with cone-like profiles. Such structures, however, are difficult to modify and usually require complicated and expensive fabrication processes. Overall, MCA structures are shown to allow good control over base surface temperature for varying heat fluxes and different MCA aspect ratios. For Ti, under steady state conditions, an aspect ratio of 12 has been shown to be optimal for surface heat reduction. Preliminary experimental results show that the temperature drop is inline with that theoretically predicted.

1.
Kobus
,
C. J.
, and
Oshio
,
T.
, 2005, “
Predicting the Thermal Performance Characteristics of Staggered Vertical Pin Fin Array Heat Sinks under Combined Mode Radiation and Mixed Convection With Impinging Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
13
), pp.
2684
2696
.
2.
Minakarni
,
K.
,
Ishizuka
,
M.
, and
Mochizuki
,
S.
, 1995, “
Performance Evaluation of Pin-Fin Heat Sinks Utilizing a Local Heating Method
,”
J. Enhanced Heat Transfer
1065-5131,
2
(
1–2
), pp.
17
22
.
3.
Chang
,
S. W.
,
Liou
,
T.-M.
, and
Juan
,
W.-C.
, 2005, “
Influence of Channel Height on Heat Transfer Augmentation in Rectangular Channels With Two Opposite Rib-Roughened Walls
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
13
), pp.
2806
2813
.
4.
Zuckerman
,
N.
, and
Lior
,
N.
, 2005, “
Impingement Heat Transfer Correlations and Numerical Modeling
,”
J. Heat Transfer
0022-1481,
127
, pp.
544
552
.
5.
Kercher
,
D. S.
,
Lee
,
J. B.
,
Brand
,
O.
,
Allen
,
M. G.
, and
Glezer
,
A.
, 2003, “
Microjet Cooling Devices for Thermal Management of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
2
), pp.
359
366
.
6.
Dewan
,
A.
,
Mahanta
,
P.
,
Raju
,
S. K.
, and
Suresh Kumar
,
P.
, 2004, “
Review of Passive Heat Transfer Augmentation Techniques
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
218
, pp.
509
527
.
7.
Webb
,
R. L.
, 2005, “
Next Generation Devices for Electronic Cooling With Heat Rejection to Air
,”
J. Heat Transfer
0022-1481,
127
, pp.
2
10
.
8.
Li
,
D.
,
Huxtable
,
S. T.
,
Abramson
,
A. R.
, and
Majumdar
,
A.
, 2005, “
Thermal Transport in Nanostructured Solid-State Cooling Devices
,”
J. Heat Transfer
0022-1481,
127
, pp.
108
114
.
9.
Grob
,
L. M.
, and
Swanson
,
T. D.
, 2000, “
Parametric Study of Variable Emissivity Radiators
,”
AIP Conf. Proc.
0094-243X,
504
, pp.
809
814
.
10.
Darrin
,
A. G.
,
Osiander
,
R.
,
Champion
,
J.
,
Swanson
,
T.
, and
Douglas
,
D.
, 2000, “
Variable Emissivity Through MEMS Technology
,”
AIP Conf. Proc.
0094-243X,
504
, pp.
803
808
.
11.
Razelos
,
P.
, 2003, “
A Critical Review of Extended Surface Heat Transfer
,”
Heat Transfer Eng.
0145-7632,
24
(
6
), pp.
11
28
.
12.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
2
, pp.
126
129
.
13.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
, 2001, “
A Comparitive Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Microscale Thermophys. Eng.
1089-3954,
5
, pp.
293
311
.
14.
Kim
,
S. J.
, 2004, “
Methods for Thermal Optimization of Microchannel Heat Sinks
,”
Heat Transfer Eng.
0145-7632,
25
(
1
), pp.
37
49
.
15.
Zhang
,
L.
,
Koo
,
J. M.
,
Jiang
,
L.
,
Asheghi
,
M.
,
Goodson
,
K. E.
,
Santiago
,
J. G.
, and
Kenny
,
T. W.
, 2002, “
Measurements and Modeling of Two-Phase Flow in Microchannels With Nearly Constant Heat Flux Boundary Conditions
,”
J. Microelectromech. Syst.
1057-7157,
11
(
1
), pp.
12
19
.
16.
Starikov
,
D.
,
Boney
,
C.
,
Pillai
,
R.
,
Bensaoula
,
A.
,
Shafeev
,
G. A.
, and
Simakin
,
A. V.
, 2004, “
Spectral and Surface Analysis of Heated Micro-Column Arrays Fabricated by Laser-Assisted Surface Modification
,”
Infrared Phys. Technol.
1350-4495,
45
, pp.
159
167
.
17.
Touloukian
,
Y. S.
, and
DeWitt
,
D. P.
, 1970, “
Thermal Radiative Properties of Metallic Elements and Alloys
,”
Thermophysical Properties of Matter, The TPRC Data Series
, Vol.
7
,
IFI/Plenum
,
New York
, pp.
732
733
.
You do not currently have access to this content.