This work is aimed at assessing the potential of winglet-type vortex generator (VG) “arrays” for multirow inline-tube heat exchangers with an emphasis on providing fundamental understanding of the relation between local flow behavior and heat transfer enhancement mechanisms. Three different winglet configurations in common-flow-up arrangement are analyzed in the seven-row compact fin-and-tube heat exchanger: (a) single–VG pair; (b) a 3VG-inline array (alternating tube row); and (c) a 3VG-staggered array. The numerical study involves three-dimensional time-dependent modeling of unsteady laminar flow (330Re850) and conjugate heat transfer in the computational domain, which is set up to model the entire fin length in the air flow direction. It was found that the impingement of winglet redirected flow on the downstream tube is an important heat transfer augmentation mechanism for the common-flow-up arrangement of vortex generators in the inline-tube geometry. At Re=850 with a constant tube-wall temperature, the 3VG-inline-array configuration achieves enhancements up to 32% in total heat flux and 74% in j factor over the baseline case, with an associated pressure-drop increase of about 41%. The numerical results for the integral heat transfer quantities agree well with the available experimental measurements.

1.
Fiebig
,
M.
,
Mitra
,
N.
, and
Dong
,
Y.
, 1990, “
Simultaneous Heat Transfer Enhancement and Flow Loss Reduction of Fin-Tubes
,”
Heat Transfer
,
G.
Hetsroni
, ed., Vol.,
3
,
Hemisphere
,
Washington, D.C.
, pp.
51
55
.
2.
Fiebig
,
M.
,
Valencia
,
A.
, and
Mitra
,
N. K.
, 1993, “
Wing-Type Vortex Generators for Fin-and-Tube Heat Exchangers
,”
Exp. Therm. Fluid Sci.
0894-1777,
7
, pp.
287
295
.
3.
Biswas
,
G.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
, 1994, “
Heat Transfer Enhancement in Fin-Tube Exchangers by Winglet Type Vortex Generators
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
283
291
.
4.
Torii
,
K.
,
Kwak
,
K. M.
, and
Nishino
,
K.
, 2002, “
Heat Transfer Enhancement Accompanying Pressure-Loss Reduction With Winglet-Type Vortex Generators for Fin-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3795
3801
.
5.
Kwak
,
K. M.
,
Torii
,
K.
, and
Nishino
,
K.
, 2003, “
Heat Transfer and Pressure-Loss Penalty for the Number of Tube Rows of Staggered Finned-Tube Bundles with a Single Transverse Row of Winglets
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
175
180
.
6.
Joardar
,
A.
,
Jacobi
, and
A. M.
, 2007, “
Heat Transfer Enhancement by Winglet-Type Vortex Generator Arrays in Compact Plain-Fin-and-Tube Heat Exchangers
,” Int. J. Refrigeration, accepted.
7.
ElSherbini
,
A.
, and
Jacobi
,
A. M.
, 2002, “
The Thermal-Hydraulic Impact of Delta-Wing Vortex Generators on the Performance of a Plain-Fin-and-Tube Heat Exchanger
,”
J. HVAC&R Res.
1078-9669,
8
, pp.
357
370
.
8.
Sommers
,
A. D.
, and
Jacobi
,
A. M.
, 2005, “
Air-Side Heat Transfer Enhancement of a Refrigerator Evaporator Using Vortex Generation
,”
Int. J. Refrig.
0140-7007,
28
(
7
), pp.
1006
1017
.
9.
Joardar
,
A.
, and
Jacobi
,
A. M.
, 2005, “
Impact of Leading Edge Delta-Wing Vortex Generators on the Thermal Performance of a Flat Tube, Louvered-Fin Compact Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1480
1493
.
10.
Fiebig
,
M.
,
,
Grosse-Gorgemann
,
A.
,
Chen
,
Y.
, and
Mitra
,
N. K.
, 1995, “
Conjugate Heat Transfer of a Finned Tube Part A: Heat Transfer Behavior and Occurrence of Heat Transfer Reversal
,”
Numer. Heat Transfer, Part A
1040-7782,
28
(
2
), pp.
133
146
.
11.
Fiebig
,
M.
,
Chen
,
Y.
,
Grosse-Gorgemann
,
A.
, and
Mitra
,
N. K.
, 1995, “
Conjugate Heat Transfer of a Finned Tube Part B: Heat Transfer Augmentation and Avoidance of Heat Transfer Reversal by Longitudinal Vortex Generators
,”
Numer. Heat Transfer, Part A
1040-7782,
28
(
2
), pp.
147
155
.
12.
Bastani Jahromi
,
A. A.
,
Mitra
,
N. K.
, and
Biswas
,
G.
, 1999, “
Numerical Investigations on Enhancement of Heat Transfer in a Compact Fin-and-Tube Heat Exchanger Using Delta Winglet Type Vortex Generators
,”
J. Enhanced Heat Transfer
1065-5131,
6
(
1
), pp.
1
11
.
13.
Jain
,
A.
,
Biswas
,
G.
, and
Maurya
,
D.
, 2003, “
Winglet-Type Vortex Generators With Common-Flow-Up Configuration for Fin-Tube Heat Exchangers
,”
Numer. Heat Transfer, Part A
1040-7782,
43
, pp.
201
219
.
14.
Jang
,
J. Y.
,
Wu
,
M. C.
, and
Chang
,
W. J.
, 1996, “
Numerical and Experimental Studies of Three Dimensional Plate-Fin-and-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
14
), pp.
3057
3066
.
15.
Tutar
,
M.
, and
Akkoca
,
A.
, 2004, “
Numerical Analysis of Fluid Flow and Heat Transfer Characteristics in Three Dimensional Plate Fin-and-Tube Heat Exchangers
,”
Numer. Heat Transfer, Part A
1040-7782,
46
, pp.
301
321
.
16.
Mendez
,
R. R.
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R.
, 2000, “
Effect of Fin Spacing on Convection in a Plate Fin and Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
39
51
.
17.
Biswas
,
G.
,
Torii
,
K.
,
Fujii
,
D.
, and
Nishino
,
K.
, 1996, “
Numerical and Experimental Determination of Flow Structure and Heat Transfer Effects of Longitudinal Vortices in a Channel Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
16
), pp.
3441
3451
.
18.
Gentry
,
M. C.
, and
Jacobi
,
A. M.
, 2002, “
Heat Transfer Enhancement by Delta-Wing-Generated Tip Vortices in Flat-Plate and Developing Channel Flows
,”
J. Heat Transfer
0022-1481,
124
, pp.
1158
1168
.
You do not currently have access to this content.