Piezoelectric fans have been shown to provide substantial enhancements in heat transfer over natural convection while consuming very little power. These devices consist of a piezoelectric material attached to a flexible cantilever beam. When driven at resonance, large oscillations at the cantilever tip cause fluid motion, which in turn results in improved heat transfer rates. In this study, the local heat transfer coefficients induced by piezoelectric fans are determined experimentally for a fan vibrating close to an electrically heated stainless steel foil, and the entire temperature field is observed by means of an infrared camera. Four vibration amplitudes ranging from 6.35to10mm are considered, with the distance from the heat source to the fan tip chosen to vary from 0.01 to 2.0 times the amplitude. The two-dimensional contours of the local heat transfer coefficient transition from a lobed shape at small gaps to an almost circular shape at intermediate gaps. At larger gaps, the heat transfer coefficient distribution becomes elliptical in shape. Correlations developed with appropriate Reynolds and Nusselt number definitions describe the area-averaged thermal performance with a maximum error of less than 12%.

1.
Kim
,
Y.
,
Wereley
,
S. T.
, and
Chun
,
C.
, 2004, “
Phase-Resolved Flow Field Produced by a Vibrating Cantilever Plate Between Two Endplates
,”
Phys. Fluids
1070-6631,
16
(
1
), pp.
145
162
.
2.
Açıkalın
,
T.
,
Raman
,
A.
, and
Garimella
,
S. V.
, 2003, “
Two-Dimensional Streaming Flows Induced by Resonating, Thin Beams
,”
J. Acoust. Soc. Am.
0001-4966,
114
(
4
), pp.
1785
1795
.
3.
Açıkalın
,
T.
,
Wait
,
S. M.
,
Garimella
,
S. V.
, and
Raman
,
A.
, 2004, “
Experimental Investigation of the Thermal Performance of Piezoelectric Fans
,”
Heat Transfer Eng.
0145-7632,
25
(
1
), pp.
4
14
.
4.
Wait
,
S. M.
,
Garimella
,
S. V.
, and
Raman
,
A.
, 2007, “
Piezoelectric Fans Using Higher Flexural Modes for Electronics Cooling Applications
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
30
(
1
), pp.
119
128
.
5.
Açıkalın
,
T.
,
Garimella
,
S. V.
,
Raman
,
A.
, and
Petroski
,
J.
, “
Characterization and Optimization of the Thermal Performance of Miniature Piezoelectric Fans
,”
Int. J. Heat Fluid Flow
0142-727X (in press).
6.
Ihara
,
A.
, and
Watanabe
,
H.
, 1994, “
On the Flow Around Flexible Plates, Oscillating With Large Amplitude
,”
J. Fluids Struct.
0889-9746,
8
(
6
), pp.
601
619
.
7.
Schmidt
,
R. R.
, 1994, “
Local and Average Transfer Coefficients on a Vertical Surface Due to Convection From a Piezoelectric Fan
,”
International Society Conference on Thermal Phenomena
, Washington, D.C, pp.
41
49
.
8.
Kimber
,
M.
,
Garimella
,
S. V.
, and
Raman
,
A.
, 2006, “
An Experimental Study of Fluidic Coupling Between Multiple Piezoelectric Fans
,”
International Society Conference on Thermal Phenomena
, San Diego, CA, pp.
333
340
.
9.
Bürmann
,
P.
,
Raman
,
A.
, and
Garimella
,
S. V.
, 2003, “
Dynamics and Topology Optimization of Piezoelectric Fans
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
25
(
4
), pp.
592
600
.
10.
Basak
,
S.
,
Raman
,
A.
, and
Garimella
,
S. V.
, 2005, “
Dynamic Response Optimization of Piezoelectrically Excited Thin Resonant Beams
,”
ASME J. Vibr. Acoust.
0739-3717,
127
, pp.
18
27
.
11.
Kim
,
B.
,
Rho
,
J.
, and
Jung
,
H.
, 2005, “
Optimal Design of Piezoelectric Cantilever Fan by Three-Dimensional Finite Element Analysis
,”
KIEE International Transactions on Electrical Machinery and Energy Conversion Systems
,
5-B
(
1
), pp.
90
94
.
13.
Liu
,
X.
,
Lienhard V
,
J. H.
, and
Lombara
,
J. S.
, 1991, “
Convective Heat Transfer by Impingement of Circular Liquid Jets
,”
ASME J. Heat Transfer
0022-1481,
133
(
3
), pp.
571
582
.
14.
Stevens
,
J.
, and
Webb
,
B. W.
, 1991, “
Local Heat Transfer Coefficients Under an Axisymmetric, Single-Phase Liquid Jet
,”
ASME J. Heat Transfer
0022-1481,
113
(
1
), pp.
71
78
.
15.
Incropera
,
F.
, and
DeWitt
,
D.
, 2002,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
Wiley
,
New York
.
16.
Kimber
,
M.
,
Garimella
,
S. V.
, and
Raman
,
A.
, 2006, “
Experimental Mapping of Local Heat Transfer Coefficients Under Multiple Piezoelectric Fans
,” ASME Paper No. IMECE2006–13922.
17.
Vliet
,
G. C.
, and
Ross
,
D. C.
, 1975, “
Turbulent Natural Convection on Upward and Downward Facing Inclined Constant Heat Flux Surfaces
,”
ASME J. Heat Transfer
0022-1481,
97
(
4
), pp.
549
555
.
18.
Bejan
,
A.
, 2004,
Convection Heat Transfer
, 3rd ed.,
Wiley
,
New York
.
19.
Rice
,
R. A.
, and
Garimella
,
S. V.
, 1995, “
Confined and Submerged Liquid Jet Impingement Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
117
(
4
), pp.
871
877
.
20.
Garimella
,
S. V.
and
Schroeder
,
V. P.
, 2001, “
Local Heat Transfer Distributions in Confined Multiple Air Jet Impingement
,”
ASME J. Electron. Packag.
1043-7398,
123
(
3
), pp.
165
172
.
21.
Churchill
,
S. W.
, and
Usagi
,
R.
, 1972, “
A General Expression for the Correlation of Rates of Transfer and Other Phenomenon
,”
AIChE J.
0001-1541,
18
(
6
), pp.
1121
1128
.
22.
Sun
,
H.
,
Ma
,
C. F.
, and
Nakayama
,
W.
, 1993, “
Local Characteristics of Convective Heat Transfer From Simulated Microelectronic Chips to Impinging Submerged Round Water Jets
,”
ASME J. Electron. Packag.
1043-7398,
115
, pp.
71
77
.
You do not currently have access to this content.