Thermal boundary conductance is becoming increasingly important in microelectronic device design and thermal management. Although there has been much success in predicting and modeling thermal boundary conductance at low temperatures, the current models applied at temperatures more common in device operation are not adequate due to our current limited understanding of phonon transport channels. In this study, the scattering processes across CrSi, AlAl2O3, PtAl2O3, and PtAlN interfaces were examined by transient thermoreflectance testing at high temperatures. At high temperatures, traditional models predict the thermal boundary conductance to be relatively constant in these systems due to assumptions about phonon elastic scattering. Experiments, however, show an increase in the conductance indicating inelastic phonon processes. Previous molecular dynamic simulations of simple interfaces indicate the presence of inelastic scattering, which increases interfacial transport linearly with temperature. The trends predicted computationally are similar to those found during experimental testing, exposing the role of multiple-phonon processes in thermal boundary conductance at high temperatures.

1.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
, pp.
793
818
.
2.
Da Silva
,
L. W.
, and
Kaviany
,
M.
, 2004, “
Micro-Thermoelectric Cooler: Interfacial Effects on Thermal and Electrical Transport
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2417
2435
.
3.
Mahan
,
G. D.
, and
Woods
,
L. M.
, 1998, “
Multilayer Thermionic Refrigeration
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
4016
4019
.
4.
Phelan
,
P. E.
,
Song
,
Y.
,
Nakabeppu
,
O.
,
Ito
,
K.
,
Hijikata
,
K.
,
Ohmori
,
T.
, and
Torikoshi
,
K.
, 1994, “
Film∕Substrate Thermal Boundary Resistance for an Er–Ba–Cu–O High-Tc Thin Film
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
1038
1041
.
5.
Phelan
,
P. E.
, 1998, “
Application of Diffuse Mismatch Theory to the Prediction of Thermal Boundary Resistance in Thin-Film High-Tc Superconductors
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
37
43
.
6.
Chen
,
G.
,
Tien
,
C. L.
,
Wu
,
X.
, and
Smith
,
J. S.
, 1994, “
Thermal Diffusivity Measurement of GaAs∕AlGaAs Thin-Film Structures
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
325
331
.
7.
Kim
,
E.-K.
,
Kwun
,
S.-I.
,
Lee
,
S.-M.
,
Seo
,
H.
, and
Yoon
,
J.-G.
, 2000, “
Thermal Boundary Resistance at Ge2Sb2Te5∕ZnS:SiO2 Interface
,”
Appl. Phys. Lett.
0003-6951,
76
, pp.
3864
3866
.
8.
Stevens
,
R. J.
,
Smith
,
A. N.
, and
Norris
,
P. M.
, 2005, “
Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
315
322
.
9.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1987, “
Thermal Resistances at Interfaces
,”
Appl. Phys. Lett.
0003-6951,
51
, pp.
2200
2202
.
10.
Cheeke
,
J. D. N.
,
Ettinger
,
H.
, and
Hebral
,
B.
, 1976, “
Analysis of Heat Transfer Between Solids at Low Temperatures
,”
Can. J. Phys.
0008-4204,
54
, pp.
1749
1771
.
11.
Little
,
W. A.
, 1959, “
The Transport of Heat Between Dissimilar Solids at Low Temperatures
,”
Can. J. Phys.
0008-4204,
37
, pp.
334
349
.
12.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1989, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
0034-6861,
61
, pp.
605
668
.
13.
Cahill
,
D. G.
,
Bullen
,
A.
, and
Lee
,
S.-M.
, 2000, “
Interface Thermal Conductance and the Thermal Conductivity of Multilayer Thin Films
,”
High Temp. - High Press.
0018-1544,
32
, pp.
135
142
.
14.
Costescu
,
R. M.
,
Wall
,
M. A.
, and
Cahill
,
D. G.
, 2003, “
Thermal Conductance of Epitaxial Interfaces
,”
Phys. Rev. B
0163-1829,
67
, p.
054302
.
15.
Stoner
,
R. J.
, and
Maris
,
H. J.
, 1993, “
Kapitza Conductance and Heat Flow Between Solids at Temperatures from 50to300K
,”
Phys. Rev. B
0163-1829,
48
, pp.
16373
16387
.
16.
Hopkins
,
P. E.
,
Salaway
,
R. N.
,
Stevens
,
R. J.
, and
Norris
,
P. M.
, 2006, “
Dependence of Thermal Boundary Conductance on Interfacial Mixing at the Chromium-Silicon Interface
,”
IMECE2006
,
Chicago
, p.
15288
.
17.
Hopkins
,
P. E.
, and
Norris
,
P. M.
, 2006, “
Thermal Boundary Conductance Response to a Change in Cr∕Si Interfacial Properties
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
131909
.
18.
Beechem
,
T.
, and
Graham
,
S.
, 2006, “
Estimating the Effects of Interface Disorder on the Thermal Boundary Resistance Using a Virtual Crystal Approximation
,”
Proceedings of the 2006 ASME International Mechanical Engineering Congress
,
Anaheim, CA
, Paper No. IMECE2006–14161.
19.
Beechem
,
T. E.
,
Graham
,
S.
,
Hopkins
,
P. E.
, and
Norris
,
P. M.
, 2007, “
The Role of Interface Disorder on Thermal Boundary Conductance Using a Virtual Crystal Approach
,”
Appl. Phys. Lett.
0003-6951,
90
, p.
054104
.
20.
Snyder
,
N. S.
, 1970, “
Heat Transport Through Helium II: Kapitza Conductance
,”
Cryogenics
0011-2275,
10
, pp.
89
95
.
21.
The term “acoustic mismatch” describes two materials that have significantly different acoustic velocities; the degree of the acoustic mismatch can be easily determined by comparing the materials’ Debye temperatures, θD.
22.
Chen
,
Y.
,
Li
,
D.
,
Yang
,
J.
,
Wu
,
Y.
,
Lukes
,
J.
, and
Majumdar
,
A.
, 2004, “
Molecular Dynamics Study of the Lattice Thermal Conductivity of Kr∕Ar Superlattice Nanowires
,”
Physica B
0921-4526,
349
, pp.
270
280
.
23.
Kosevich
,
Y. A.
, 1995, “
Fluctuation Subharmonic and Multiharmonic Phonon Transmission and Kapitza Conductance Between Crystals With Very Different Vibrational Spectra
,”
Phys. Rev. B
0163-1829,
52
, pp.
1017
1024
.
24.
Lyeo
,
H.-K.
, and
Cahill
,
D. G.
, 2006, “
Thermal Conductance of Interfaces Between Highly Dissimilar Materials
,”
Phys. Rev. B
0163-1829,
73
, p.
144301
.
25.
Stevens
,
R. J.
,
Zhigilei
,
L. V.
, and
Norris
,
P. M.
, 2007, “
Effects of Temperature and Disorder on Thermal Boundary Conductance at Solid-Solid Interfaces: Nonequilbrium Molecular Dynamics Simulations
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
3977
3989
.
26.
Norris
,
P. M.
,
Caffrey
,
A. P.
,
Stevens
,
R. J.
,
Klopf
,
J. M.
,
Mcleskey
,
J. T.
, and
Smith
,
A. N.
, 2003, “
Femtosecond Pump-Probe Nondestructive Examination of Materials
,”
Rev. Sci. Instrum.
0034-6748,
74
, pp.
400
406
.
27.
Kittel
,
C.
, 1996,
Introduction to Solid State Physics
,
Wiley
,
New York
.
28.
Hohlfeld
,
J.
,
Wellershoff
,
S.-S.
,
Gudde
,
J.
,
Conrad
,
U.
,
Jahnke
,
V.
, and
Matthias
,
E.
, 2000, “
Electron and Lattice Dynamics Following Optical Excitation of Metals
,”
Chem. Phys.
0301-0104,
251
, pp.
237
258
.
29.
Stevens
,
R. J.
,
Smith
,
A. N.
, and
Norris
,
P. M.
, 2006, “
Signal Analysis and Characterization of Experimental Setup for the Transient Thermoreflectance Technique
,”
Rev. Sci. Instrum.
0034-6748,
77
, p.
084901
.
30.
Capinski
,
W. S.
, and
Maris
,
H. J.
, 1996, “
Improved Apparatus for Picosecond Pump-and-Probe Optical Measurements
,”
Rev. Sci. Instrum.
0034-6748,
67
, pp.
2720
2726
.
31.
Ozisik
,
M. N.
, 1993,
Heat Conduction
,
Wiley
,
New York
.
32.
Anisimov
,
S. I.
,
Kapeliovich
,
B. L.
, and
Perel’man
,
T. L.
, 1974, “
Electron Emission From Metal Surfaces Exposed to Ultrashort Laser Pulses
,”
Sov. Phys. JETP
0038-5646,
39
, pp.
375
377
.
33.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1992, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating on Metals
,”
HTD (Am. Soc. Mech. Eng.)
0272-5673,
196
, pp.
41
49
.
34.
Smith
,
A. N.
,
Hostetler
,
J. L.
, and
Norris
,
P. M.
, 1999, “
Nonequilibrium Heating in Metal Films: An Analytical and Numerical Analysis
,”
Numer. Heat Transfer, Part A
1040-7782,
35
, pp.
859
873
.
35.
Smith
,
A. N.
,
Hostetler
,
J. L.
, and
Norris
,
P. M.
, 2000, “
Thermal Boundary Resistance Measurements Using a Transient Thermoreflectance Technique
,”
Microscale Thermophys. Eng.
1089-3954,
4
, pp.
51
60
.
36.
Incropera
,
F.
, and
Dewitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
37.
Tien
,
C. L.
,
Armaly
,
B. F.
, and
Jagannathan
,
P. S.
, 1969, “
Thermal Conductivity of Thin Metallic Films and Wires at Cryogenic Temperatures
,”
Thermal Conductivity VIII
,
Plenum
,
New York
.
38.
Majumdar
,
A.
, and
Reddy
,
P.
, 2004, “
Role of Electron-Phonon Coupling in Thermal Conductance of Metal-Nonmetal Interfaces
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
4768
4770
.
39.
Daly
,
B. C.
,
Maris
,
H. J.
,
Imamura
,
K.
, and
Tamura
,
S.
, 2002, “
Molecular Dynamics Calculation of the Thermal Conductivity of Superlattices
,”
Phys. Rev. B
0163-1829,
66
, p.
024301
.
40.
Young
,
D. A.
, and
Maris
,
H. J.
, 1989, “
Lattice-Dynamical Calculation of the Kapitza Resistance Between Fcc Lattices
,”
Phys. Rev. B
0163-1829,
40
, pp.
3685
3693
.
41.
Reddy
,
P.
,
Castelino
,
K.
, and
Majumdar
,
A.
, 2005, “
Diffuse Mismatch Model of Thermal Boundary Conductance Using Exact Phonon Dispersion
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
211908
.
42.
Stevens
,
R. J.
,
Norris
,
P. M.
, and
Zhigilei
,
L. V.
, 2004, “
Molecular-Dynamics Study of Thermal Boundary Resistance: Evidence of Strong Inelastic Scattering Transport Channels
,”
IMECE2004
, p.
60334
.
43.
Levinshtein
,
M. E.
,
Rumyantsev
,
S. L.
, and
Shur
,
M. S.
, 2001,
Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe
,
Wiley-Interscience
,
New York
.
44.
Fugate
,
R. Q.
, and
Swenson
,
C. A.
, 1969, “
Specific Heat of Al2O3 From 2to25K
,”
J. Appl. Phys.
0021-8979,
40
, pp.
3034
3036
.
45.
Gray
,
D. E.
, 1972,
American Institute of Physics Handbook
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.