The motion of a two-dimensional vortex pair moving toward a wall is studied numerically. The case for which the wall is heated is analyzed. The equations of momentum and energy conservation are solved using a finite volume scheme. In this manner, the instantaneous heat transfer from the wall is obtained and is related to the dynamics of the fluid vortex interacting with the wall. It was found that, as expected, when the fluid vortex approaches the wall, the heat transfer increases significantly. The heat transfer changes in a nonmonotonic manner as a function of time: When the vortex first reaches the wall, a volume of heated fluid is convected from the wall; this fluid volume circulates in the vicinity of the wall, causing the rate of heat transfer to decrease slightly, to then increase again. A wide range of Prandtl and Reynolds numbers were tested. A measure of the effective heat transfer coefficient, or Nusselt number, is proposed.

1.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Ibele
,
W. E.
,
Patankar
,
S. V.
,
Simon
,
T. W.
,
Kuehn
,
T. H.
,
Strykowski
,
P. J.
,
Tamma
,
K. K.
,
Bar-Cohen
,
A.
,
Heberlein
,
J. V. R.
,
Davidson
,
J. M.
,
Bischof
,
J.
,
Kulacki
,
F. A.
,
Kortshagen
,
U.
,
Garrick
,
S.
, and
Srinivasan
,
V.
, 2005, “
Heat Transfer: A Review of 2002 Literature
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
819
927
.
2.
Fiebig
,
M.
, 1997, “
Vortices and Heat Transfer
,”
Z. Angew. Math. Mech.
0044-2267,
77
, pp.
3
18
.
3.
Valencia
,
A.
, and
Sen
,
M.
, 2003, “
Unsteady Flow and Heat Transfer in Plane Channels With Spatially Periodic Vortex Generators
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3189
3199
.
4.
Yang
,
S.-J.
, 2003, “
Numerical Study of Heat Transfer Enhancement in a Channel Flow Using an Oscillating Vortex Generator
,”
Heat Mass Transfer
0947-7411,
39
, pp.
257
265
.
5.
Doligalski
,
T. L.
, and
Walker
,
J. D. A.
, 1984, “
The Boundary Layer Induced by a Convected Two-Dimensional Vortex
,”
J. Fluid Mech.
0022-1120,
139
, pp.
1
28
.
6.
Escriva
,
X.
, and
Giovannini
,
A.
, 2003, “
Analysis of Convective Momentum and Wall Heat Transfer: Application to Vortex Boundary Layer Interaction
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2471
2483
.
7.
Doligalski
,
T. L.
,
Smith
,
C. R.
, and
Walker
,
J. D. A.
, 1994, “
Vortex Interactions With Walls
,”
Annu. Rev. Fluid Mech.
0066-4189,
26
, pp.
573
616
.
8.
Walker
,
J. D. A.
,
Smith
,
C. R.
,
Cerra
,
A. W.
, and
Doligalski
,
T. L.
, 1987, “
The Impact of a Vortex Ring on a Wall
,”
J. Fluid Mech.
0022-1120,
181
, pp.
99
140
.
9.
Ersoy
,
S.
, and
Walker
,
J. D. A.
, 1986, “
Flow Induced at a Wall by a Vortex Pair
,”
AIAA J.
0001-1452,
24
(
10
), pp.
1597
1605
.
10.
Orlandi
,
P.
, 1990, “
Vortex Dipole Rebound From a Wall
,”
Phys. Fluids A
0899-8213,
2
, pp.
1429
1436
.
11.
Chang
,
T. Y.
,
Hertzberg
,
J. R.
, and
Kerr
,
R. M.
,
, 1997, “
Three-Dimensional Vortex/Wall Interaction: Entrainment in Numerical Simulation Experiment
,”
Phys. Fluids
1070-6631,
9
(
1
), pp.
57
66
.
12.
Reulet
,
P.
,
Marchand
,
M.
, and
Millan
,
P.
, 1998, “
Experimental Characterization of the Convective Vortex-Wall Interaction
,”
Rev. Gen. Therm.
0035-3159,
37
(
8
), pp.
661
668
.
13.
Romero-Méndez
,
R.
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R. L.
, 1998, “
Enhancement of Heat Transfer in an Inviscid-Flow Thermal Boundary Layer Due to a Rankine Vortex
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
3829
3840
.
14.
Hill
,
M. J. M.
, 1894, “
On a Spherical Vortex
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
185
, pp.
213
245
.
15.
Saffman
,
P. G.
, 2001,
Vortex Dynamics
,
Cambridge University Press
,
Cambridge, England
.
16.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
17.
Van Doormal
,
J. P.
, and
Raithby
,
G. D.
, 1984, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
0149-5720,
7
, pp.
147
163
.
18.
Lamb
,
H.
, 1995,
Hydrodynamics
,
Cambridge University Press
,
New York.
.
You do not currently have access to this content.