Three-dimensional complex turbulent flow and heat transfer of internally longitudinally finned tube with blocked core tube and streamwise wavy fin are numerically investigated. The numerical method is validated by comparing the calculated results with corresponding experimental data. The effects of both wave height and wave distance on heat transfer performance are examined. The range of wave height to hydraulic diameter ratio is from 0.61 to 2.45, and that of wave distance to hydraulic diameter ratio is from 3.06 to 14.69, while that of Reynolds number is from 904 to 4520. The computational results demonstrate that the Nusselt number and friction factor increase with the increase of the wave height, while they decrease with the increase of the wave distance. Furthermore, general correlations are proposed to describe the performance of the wavy configuration for 904Re4520, 0.61sde2.45, 6.12lde11.02, with the mean deviations for heat transfer and friction factor correlations being 2.8% and 1.9%, respectively.

1.
Fabbri
,
G.
, 1998, “
Heat Transfer Optimization in Internally Finned Tubes Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
1243
1253
.
2.
Fabbri
,
G.
, 2004, “
Effect of Viscous Dissipation on the Optimization of the Heat Transfer in Internally Finned Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3003
3015
.
3.
Alam
,
I.
, and
Ghoshdastidar
,
P. S.
, 2002, “
A Study of Heat Transfer Effectiveness of Circular Tubes With Internal Longitudinal Fins Having Tapered Lateral Profiles
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1371
1376
.
4.
Zeitoun
,
O.
, and
Hegazy
,
A. S.
, 2004, “
Heat Transfer for Laminar Flow in Internally Finned Pipes With Different Fin Heights and Uniform Wall Temperature
,”
Heat Mass Transfer
0947-7411,
40
, pp.
253
259
.
5.
Saad
,
A. E.
,
Sayed
,
A. E.
,
Mohamed
,
E. A.
, and
Mohamed
,
M. S.
, 1997, “
Experimental Study of Turbulent Flow Inside a Circular Tube With Longitudinal Interrupted Fins in the Streamwise Direction
,”
Exp. Therm. Fluid Sci.
0894-1777,
15
, pp.
1
15
.
6.
Zhang
,
Y. M.
, and
Faghri
,
A.
, 1996, “
Heat Transfer Enhancement in Latent Heat Transfer Thermal Energy Storage System by Using the Internally Finned Tube
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
3165
3173
.
7.
Yu
,
B.
,
Nie
,
J. H.
,
Wang
,
Q. W.
, and
Tao
,
W. Q.
, 1999, “
Experimental Study on the Pressure Drop and Heat Transfer Characteristics of Tubes With Internal Wave-like Longitudinal Fins
,”
Heat Mass Transfer
0947-7411,
35
, pp.
65
73
.
8.
Huq
,
M.
, and
Huq
,
A. M. A.
, 1998, “
Experimental Measurements of the Heat Transfer in an Internally Finned Tube
,”
Int. Commun. Heat Mass Transfer
0735-1933,
25
, pp.
619
630
.
9.
Campo
,
A.
, and
Chang
,
J.
, 1997, “
Correlation Equations for Friction Factors and Convective Coefficients in Tubes Containing Bundles of Internal Longitudinal Fins
,”
Heat Mass Transfer
0947-7411,
33
, pp.
225
232
.
10.
Dagtekin
,
I.
,
Oztop
,
H. F.
, and
Sahin
,
A. Z.
, 2005, “
An Analysis of Entropy Generation through a Circular Duct With Different Shaped Longitudinal Fins for Laminar Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
171
181
.
11.
Bhatia
,
R. S.
, and
Webb
,
R. L.
, 2001, “
Numerical Study of Turbulent Flow and Heat Transfer in Micro-Fin Tubes-Part1, Model Validation
,”
J. Enhanced Heat Transfer
1065-5131,
8
, pp.
291
304
.
12.
Liu
,
X. Y.
, and
Jensen
,
M. K.
, 1999, “
Numerical Investigation of Turbulent Flow and Heat Transfer in Internally Finned Tubes
,”
J. Enhanced Heat Transfer
1065-5131,
6
, pp.
105
119
.
13.
Wang
,
Q. W.
,
Lin
,
M.
, and
Zeng
,
M.
, 2008, “
Effect of Blocked Core-Tube Diameter on Heat Transfer Performance of Internally Longitudinal Finned Tubes
,”
Heat Transfer Eng.
0145-7632,
29
, pp.
107
115
.
14.
Tsai
,
S. F.
,
Sheu
,
T. W. H.
, and
Lee
,
S. M.
, 1999, “
Heat Transfer in a Conjugate Heat Exchanger With a Wavy Fin Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
1735
1745
.
15.
Jang
,
J. Y.
, and
Chen
,
L. K.
, 1997, “
Numerical Analysis of Heat Transfer and Fluid Flow in a Three-Dimensional Wavy-Fin and Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
3981
3990
.
16.
Lozzaa
,
G.
, and
Merlob
,
U.
, 2001, “
An Experimental Investigation of Heat Transfer and Friction Losses of Interrupted and Wavy Fins for Fin-and-Tube Heat Exchangers
,”
Int. J. Refrig.
0140-7007,
24
, pp.
409
416
.
17.
Leu
,
J. S.
,
Liu
,
M. S.
,
Liaw
,
J. S.
, and
Wang
,
C. C.
, 2001, “
A Numerical Investigation of Louvered Fin-and-Tube Heat Exchangers Having Circular and Oval Tube Configurations
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
4235
4243
.
18.
Doormal
,
J. P. V.
, and
Raithby
,
G. G.
, 1984, “
Enhancement of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
0149-5720,
7
, pp.
147
163
.
19.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
20.
Webb
,
R. L.
, 1994,
Principles of Enhanced Heat Transfer
,
Wiley
, p.
210
.
You do not currently have access to this content.