The radiative transfer in dispersed media in the geometric optic regime is investigated through two continuum-based approaches. The first one is the traditional treatment of dispersed media as continuous and homogeneous systems, referred here as the homogeneous phase approach (HPA). The second approach is based on a separate treatment of the radiative transfer in the continuous and dispersed phases, referred here as the multiphase approach (MPA). The effective radiative properties involved in the framework of the HPA are determined using the recent ray-tracing (RT) method, enabled to overcome the modeling difficulties such as the dependent scattering effects and the misunderstanding of the effective absorption coefficient. The two modeling approaches are compared with the direct Monte Carlo simulation. It is shown that (i) the HPA combined with effective radiative properties, such as those from the RT method, is satisfactory in analyzing the radiative transfer in dispersed media constituting of transparent, semitransparent, or opaque particles. Therefore, the use of more complex continuum models such as the dependence included discrete ordinate method (Singh, B. P., and Kaviany, M., 1992, “Modelling Radiative Heat Transfer in Packed Beds,” Int. J. Heat Mass Transfer, 35, pp. 1397–1405) is not imperative anymore. (ii) The MPA, though a possible candidate to handle nonequilibrium problems, is suitable if the particle (geometric) backscattering is weak or absent. It is the case, for example, for dispersed media constituted of opaque particles or air bubbles. However, caution should be taken with the MPA when dealing with the radiative transfer in dispersed media constituted of nonopaque particles having refractive indexes greater than that of the continuous host medium.

1.
Muller
,
R.
,
Lipinski
,
W.
, and
Steinfeld
,
A.
, 2008, “
Transient Heat Transfer in a Directly-Irradiated Solar Chemical Reactor for the Thermal Dissociation of ZnO
,”
Appl. Therm. Eng.
1359-4311,
28
, pp.
524
531
.
2.
Randrianalisoa
,
J.
,
Baillis
,
D.
, and
Pilon
,
L.
, 2006, “
Modeling Radiation Characteristics of Semitransparent Media Containing Bubbles or Particles
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis
1084-7529,
23
, pp.
1645
1656
.
3.
Jones
,
A. R.
, 1999, “
Light Scattering for Particle Characterisation
,”
Prog. Energy Combust. Sci.
0360-1285,
25
, pp.
1
53
.
4.
Gusarov
,
A. V.
, and
Kruth
,
J. -P.
, 2005, “
Modelling of Radiation Transfer in Metallic Powders at Laser Treatment
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3423
3434
.
5.
Parent
,
G.
,
Boulet
,
P.
,
Gauthier
,
S.
,
Blaise
,
J.
, and
Collin
,
A.
, 2006, “
Experimental Investigation of Radiation Transmission Through a Water Spray
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
97
, pp.
126
141
.
6.
Dombrovsky
,
L.
,
Randrianalisoa
,
J.
, and
Baillis
,
D.
, 2007, “
Infrared Radiative Properties of Polymer Coatings Containing Hollow Microspheres
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
1516
1527
.
7.
Foldy
,
L. L.
, 1945, “
The Multiple Scattering of Waves. I. General Theory of Isotropic Scattering by Randomly Distributed Scatterers
,”
Phys. Rev.
0096-8250,
67
, pp.
107
119
.
8.
Goldberg
,
M. L.
, and
Watson
,
K. M.
, 1964,
Collision Theory
,
Wiley
,
New York
.
9.
Ishimaru
,
A.
, 1978,
Wave Propagation and Scattering in Random Media
,
Academic
,
New York
.
10.
Apresyan
,
L. A.
, and
Kravtsov
,
Y. A.
, 1983,
Radiative Transfer Theory
,
Nauka
,
Moscow
.
11.
Papanicolaou
,
G. C.
, and
Burridge
,
R.
, 1975, “
Transport Equations for the Stokes Parameters From Maxwell Equations in a Random Media
,”
J. Math. Phys.
0022-2488,
16
, pp.
2074
2082
.
12.
Mishchenko
,
M. I.
,
Travis
,
L. D.
, and
Lacis
,
A. A.
, 2006,
Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering
,
Cambridge University Press
,
Cambridge
.
13.
Chandrasekhar
,
S.
, 1950,
Radiative Transfer
,
Oxford University Press
,
Oxford
.
14.
Lenoble
,
J.
, 1985,
Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures
,
Deepak
,
Hampton
.
15.
Brewster
,
M. Q.
, 1992,
Thermal Radiative Transfer and Properties
,
Wiley
,
New York
.
16.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
,
Academic
,
New York
.
17.
Siegel
,
R.
, and
Howell
,
J. R.
, 2002,
Thermal Radiation Heat Transfer
,
Taylor & Francis
,
New York
.
18.
Mishchenko
,
M. I.
, 2006, “
Far-Field Approximation in Electromagnetic Scattering
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
100
, pp.
268
276
.
19.
Kerker
,
M.
, 1966,
The Scattering of Light and Other Electromagnetic Radiation
,
Academic
,
New York
.
20.
Van de Hulst
,
H. C.
, 1981,
Light Scattering by Small Particles
,
Dover
,
New York
.
21.
Bohren
,
C. F.
, and
Huffman
,
D. R.
, 1983,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
22.
Durant
,
S.
,
Calvo-Perez
,
O.
,
Vukadinovic
,
N.
, and
Greffet
,
J. J.
, 2007, “
Light scattering by a Random Distribution of Particles Embedded in Absorbing Media: Full-Wave Monte Carlo Solutions of the Extinction Coefficient
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis
1084-7529,
24
, pp.
2953
2962
.
23.
Waterman
,
P. C.
, and
Truell
,
R.
, 1961, “
Multiple Scattering of Waves
,”
J. Math. Phys.
0022-2488,
2
, pp.
512
537
.
24.
Twersky
,
V.
, 1962, “
On Scattering of Waves by Random Distributions. I. Free-Space Scatterer Formalism
,”
J. Math. Phys.
0022-2488,
3
, pp.
700
715
.
25.
Lax
,
M.
, 1952, “
Multiple Scattering of Waves. II. The Effective Field in Dense Systems
,”
Phys. Rev.
0096-8250,
85
, pp.
621
629
.
26.
Cartigny
,
J. D.
,
Yamada
,
Y.
, and
Tien
,
C. L.
, 1986, “
Radiative Transfer With Dependent Scattering by Particles: Part I—Theoretical Investigation
,”
ASME J. Heat Transfer
0022-1481,
108
, pp.
608
613
.
27.
Yamada
,
Y.
,
Cartigny
,
J. D.
, and
Tien
,
C. L.
, 1986, “
Radiative Transfer With Dependent Scattering by Particles: Part II—Experimental Investigation
,”
ASME J. Heat Transfer
0022-1481,
108
, pp.
614
618
.
28.
Drolen
,
B. L.
, and
Tien
,
C. L.
, 1987, “
Independent and Dependent Scattering in Packed-Sphere Systems
,”
J. Thermophys. Heat Transfer
0887-8722,
1
, pp.
63
68
.
29.
Kumar
,
S.
, and
Tien
,
C. L.
, 1990, “
Dependent Absorption and Extinction of Radiation by Small Particles
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
178
185
.
30.
Kamiuto
,
K.
, 1990, “
Correlated Radiative Transfer in Packed-Sphere Systems
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
43
, pp.
39
43
.
31.
Singh
,
B. P.
, and
Kaviany
,
M.
, 1992, “
Modelling Radiative Heat Transfer in Packed Beds
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
1397
1405
.
32.
Coquard
,
C.
, and
Baillis
,
D.
, 2004, “
Radiative Characteristics of Opaque Spherical Particle Beds: A New Method of Prediction
,”
J. Thermophys. Heat Transfer
0887-8722,
18
(
2
), pp.
178
186
.
33.
Brewster
,
M. Q.
, 2004, “
Volume Scattering of Radiation in Packed Beds of Large, Opaque Spheres
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
1048
1050
.
34.
Dombrovsky
,
L.
, 2000, “
Thermal Radiation From Nonisothermal Spherical Particles of a Semitransparent Material
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
1661
1672
.
35.
Dombrovsky
,
L.
, 2007, “
Large-Cell Model of Radiation Heat Transfer in Multiphase Flows Typical for Fuel-Coolant Interaction
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
3401
3410
.
36.
Gusarov
,
A. V.
, 2008, “
Homogenization of Radiation Transfer in Two-Phase Media With Irregular Phase Boundaries
,”
Phys. Rev. B
0163-1829,
77
, p.
144201
.
37.
Kokhanovsky
,
A. A.
, 1999,
Optics of Light Scattering Media, Problems and Solutions
,
Wiley
,
Chichester
.
38.
Welford
,
W. T.
, 1962,
Geometrical Optics: Optical Instrumentation
,
North-Holland
,
Amsterdam
.
39.
Randrianalisoa
,
J.
, and
Baillis
,
D.
, “
Radiative Properties of Densely Packed Spheres in Semitransparent Media: A New Geometric Optics Approach
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073, submitted.
40.
Randrianalisoa
,
J.
,
Baillis
,
D.
, and
Pilon
,
L.
, 2006, “
Improved Inverse Method for Radiative Characteristics of Closed-Cell Absorbing Porous Media
,”
J. Thermophys. Heat Transfer
0887-8722,
20
(
4
), pp.
871
883
.
41.
Lebedev
,
N.
,
Gartz
,
M.
,
Kreibig
,
U.
, and
Stenzel
,
O.
, 1999, “
Optical Extinction by Spherical Particles in an Absorbing Medium: Application to Composite Absorbing Films
,”
Eur. Phys. J. D
1434-6060,
6
, pp.
365
373
.
42.
Pilon
,
L.
, and
Viskanta
,
R.
, 2002, “
Apparent Radiation Characteristics of Semitransparent Media Containing Gas Bubbles
,”
Proceedings of the 12th International Heat Transfer Conference
, Elsevier, France, pp.
645
650
.
43.
Yang
,
P.
,
Gao
,
B. -C.
,
Wiscombe
,
W. J.
,
Mishchenko
,
M. I.
,
Platnick
,
S. E.
,
Huang
,
H. -L.
,
Baum
,
B. A.
,
Hu
,
Y. X.
,
Winker
,
D. M.
,
Tsay
,
S. -C.
, and
Park
,
S. K.
, 2002, “
Inherent and Apparent Scattering Properties of Coated or Uncoated Spheres Embedded in an Absorbing Host Medium
,”
Appl. Opt.
0003-6935,
41
, pp.
2740
2759
.
44.
Dombrovsky
,
L.
, 1996,
Radiation Heat Transfer in Disperse Systems
,
Begell House
,
New York
.
45.
Dombrovsky
,
L.
, 2004, “
The Propagation of Infrared Radiation in a Semitransparent Liquid Containing Gas Bubbles
,”
High Temp.
0018-151X,
42
(
1
), pp.
133
139
.
46.
Hottel
,
H. C.
, and
Sarofim
,
A. F.
, 1967,
Radiative Transfer
,
McGraw-Hill
,
New York
.
47.
Tancrez
,
M.
, and
Taine
,
J.
, 2004, “
Direct Identification of Absorption and Scattering Coefficients and Phase Function of a Porous Medium by a Monte Carlo Technique
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
373
383
.
48.
Zeghondy
,
B.
,
Estelle
,
Y.
, and
Taine
,
J.
, 2006, “
Determination of the Anisotropic Radiative Properties of a Porous Material by Radiative Distribution Function Identification (RDFI)
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
2810
2819
.
49.
Yang
,
Y. S.
,
Howell
,
J. R.
, and
Klein
,
D. E.
, 1983, “
Radiative Heat Transfer Through a Randomly Packed Bed of Spheres by the Monte Carlo Method
,”
ASME J. Heat Transfer
0022-1481,
105
, pp.
325
332
.
You do not currently have access to this content.