Due to the existence of a velocity slip and temperature jump on the solid walls, the heat transfer in microchannels significantly differs from the one in the macroscale. In our research, we have focused on the pressure driven gas flows in a simple finite microchannel geometry, with an entrance and an outlet, for low Reynolds (Re<200) and low Knudsen (Kn<0.01) numbers. For such a regime, the slip induced phenomena are strongly connected with the viscous effects. As a result, heat transfer is also significantly altered. For the optimization of flow conditions, we have investigated various temperature gradient configurations, additionally changing Reynolds and Knudsen numbers. The entrance effects, slip flow, and temperature jump lead to complex relations between flow behavior and heat transfer. We have shown that slip effects are generally insignificant for flow behavior. However, two configuration setups (hot wall cold gas and cold wall hot gas) are affected by slip in distinguishably different ways. For the first one, which concerns turbomachinery, the mass flow rate can increase by about 1% in relation to the no-slip case, depending on the wall-gas temperature difference. Heat transfer is more significantly altered. The Nusselt number between slip and no-slip cases at the outlet of the microchannel is increased by about 10%.

1.
Bunker
,
R. S.
, 2007, “
Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges
,”
ASME J. Turbomach.
0889-504X,
129
(
2
), pp.
193
201
.
2.
Gau
,
C.
, and
Huang
,
W. B.
, 1990, “
Effect of Weak Swirling Flow on Film Cooling Performance
,”
ASME J. Turbomach.
0889-504X,
112
(
4
), pp.
786
791
.
3.
Li
,
P. L.
,
Ko
,
H. S.
,
Jeng
,
D. Z.
,
Liu
,
C. W.
, and
Gau
,
C.
, 2009, “
Micro Film Cooling Performance
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
25–26
), pp.
5889
5894
.
4.
Hale
,
C. A.
,
Plesniak
,
M. W.
, and
Ramadhyani
,
S.
, 2000, “
Film Cooling Effectiveness for Short Film Cooling Holes Fed by a Narrow Plenum
,”
ASME J. Turbomach.
0889-504X,
122
(
3
), pp.
553
557
.
5.
Nakamata
,
C.
,
Okita
,
Y.
,
Matsuno
,
S.
,
Mimura
,
F.
,
Matsushita
,
M.
,
Yamana
,
T.
, and
Yoshida
,
T.
, 2005, “
Spatial Arrangement Dependence of Cooling Performance of an Integrated Impingement and Pin Fin Cooling Configuration
,” ASME Paper No. GT-2005-68348.
6.
Kost
,
F.
, and
Mullaert
,
A.
, 2006, “
Migration of Film-Coolant From Slot and Hole Ejection at a Turbine Vane Endwall
,” ASME Paper No. GT2006-90355.
7.
Kost
,
F.
, and
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part I—Aerodynamic Measurements
,”
ASME J. Turbomach.
0889-504X,
123
(
4
), pp.
709
719
.
8.
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II—Heat Transfer and Film Cooling Effectiveness
,”
ASME J. Turbomach.
0889-504X,
123
(
4
), pp.
720
729
.
9.
Sundaram
,
N.
, and
Thole
,
K. A.
, 2009, “
Film-Cooling Flowfields With Trenched Holes on an Endwall
,”
ASME J. Turbomach.
0889-504X,
131
(
4
), p.
041007
.
10.
Rehder
,
H. J.
, and
Dannhauer
,
A.
, 2007, “
Experimental Investigation of Turbine Leakage Flows on the 3D Flow Field and Endwall Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
129
(
3
), pp.
608
618
.
11.
Fluent Inc.
, 2006, FLUENT 6.3.26 Manual.
12.
Ewart
,
T.
,
Firpo
,
J. L.
,
Graur
,
I. A.
,
Perrier
,
P.
, and
Meolans
,
J. G.
, 2009, “
DSMC Simulation: Validation and Application to Low Speed Gas Flows in Microchannels
,”
ASME J. Fluids Eng.
0098-2202,
131
, p.
014501
.
13.
Yang
,
J. M.
,
Yang
,
X.
,
Ho
,
C. M.
, and
Tai
,
Y. -C.
, 2001, “
Micromachined Particle Filter With Low Power Dissipation
,”
ASME J. Fluids Eng.
0098-2202,
123
(
4
), pp.
899
908
.
14.
Bar-Cohen
,
A.
,
Arik
,
M.
, and
Ohadi
,
M.
, 2006, “
Direct Liquid Cooling of High Flux Micro and Nano Electronic Components
,”
Proc. IEEE
0018-9219,
94
(
8
),
1549
-
1570
.
15.
Bahukudumbi
,
P.
,
Park
,
J. H.
, and
Beskok
,
A.
, 2003, “
A Unified Engineering Model for Steady and Quasi-Steady Shear-Driven Gas Microflows
,”
Microscale Thermophys. Eng.
1089-3954,
7
(
4
), pp.
291
315
.
16.
Beskok
,
A.
,
Karniadakis
,
G. E.
, and
Trimmer
,
T.
, 1996, “
Rarefaction and Compressibility Effects in Gas Microflows
,”
ASME J. Fluids Eng.
0098-2202,
118
(
3
), pp.
448
456
.
17.
Jain
,
V.
, and
Lin
,
C. X.
, 2006, “
Numerical Modeling of Three-Dimensional Compressible Gas Flow in Microchannels
,”
J. Micromech. Microeng.
0960-1317,
16
(
2
), pp.
292
302
.
18.
Jeong
,
N.
,
Lin
,
Ch. -L.
, and
Choi
,
D. H.
, 2006, “
Lattice Boltzmann Study of Three-Dimensional Gas Microchannel Flows
,”
J. Micromech. Microeng.
0960-1317,
16
(
9
), pp.
1749
1759
.
19.
Jeong
,
H. E.
, and
Jeong
,
J. T.
, 2006, “
Extended Graetz Problem Including Streamwise Conduction and Viscous Dissipation in Microchannel
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
13–14
), pp.
2151
2157
.
20.
Mackowski
,
D. W.
,
Papadopoulos
,
D. H.
, and
Rosner
,
D. E.
, 1999, “
Comparison of Burnett and DSMC Predictions of Pressure Distributions and Normal Stress in One-Dimensional, Strongly Nonisothermal Gases
,”
Phys. Fluids
1070-6631,
11
(
8
), pp.
2108
2116
.
21.
Yang
,
J.
,
Ye
,
J. J.
,
Zheng
,
I.
,
Wong
,
J. Y.
,
Lam
,
C. K.
,
Xu
,
P.
,
Chen
,
R. X.
, and
Zhu
,
Z. H.
, 2010, “
Using Direct Simulation Monte Carlo With Improved Boundary Conditions for Heat and Mass Transfer in Microchannels
,”
ASME J. Heat Transfer
0022-1481,
132
(
4
), pp.
041008
.
22.
Bahrami
,
M.
,
Tamayol
,
A.
, and
Taheri
,
P.
, 2009, “
Slip-Flow Pressure Drop in Microchannels of General Cross Section
,”
ASME J. Fluids Eng.
0098-2202,
131
, p.
031201
.
23.
Duan
,
Z.
, and
Muzychka
,
Y. S.
, 2010, “
Slip Flow in the Hydrodynamic Entrance Region of Circular and Noncircular Microchannels
,”
ASME J. Fluids Eng.
0098-2202,
132
, p.
011201
.
24.
Khadem
,
M. H.
,
Shams
,
M.
, and
Hossainpour
,
S.
, 2009, “
Numerical Simulation of Roughness Effects on Flow and Heat Transfer in Microchannels at Slip Flow Regime
,”
Int. Commun. Heat Mass Transfer
0735-1933,
36
(
1
), pp.
69
77
.
25.
Renksizbulut
,
M.
,
Niazmand
,
H.
, and
Tercan
,
G.
, 2006, “
Slip-Flow and Heat Transfer in Rectangular Microchannels With Constant Wall Temperature
,”
Int. J. Therm. Sci.
1290-0729,
45
(
9
), pp.
870
881
.
26.
van Rij
,
J.
,
Ameel
,
T.
, and
Harman
,
T.
, 2009, “
The Effect of Viscous Dissipation and Rarefaction on Rectangular Microchannel Convective Heat Transfer
,”
Int. J. Therm. Sci.
1290-0729,
48
(
2
), pp.
271
281
.
27.
Maxwell
,
J. C.
, 1879, “
On Stresses in Rarefied Gases Arising From Inequalities of Temperature
,”
Philos. Trans. R. Soc. London
0962-8428,
170
, pp.
231
256
.
28.
Smoluchowski
,
M.
, 1898, “
Uber den Temperatursprung bei Warmeleitung in Gasen
,”
Akad. Wiss. Wien
,
CVII
, pp.
304
329
.
29.
Lockerby
,
D. A.
,
Reese
,
J. M.
,
Emerson
,
D. R.
, and
Barber
,
R. W.
, 2004, “
Velocity Boundary Condition at Solid Walls in Rarefied Gas Calculations
,”
Phys. Rev. E
1063-651X,
70
, p.
017303
.
30.
Sone
,
Y.
, and
Yoshimoto
,
M.
, 1997, “
Demonstration of a Rarefied Gas Flow Induced Near the Edge of a Uniformly Heated Plate
,”
Phys. Fluids
1070-6631,
9
(
11
), pp.
3530
3534
.
31.
Sone
,
Y.
, 2000, “
Flows Induced by Temperature Fields in a Rarefied Gas and Their Ghost Effect on the Behavior of a Gas in the Continuum Limit
,”
Annu. Rev. Fluid Mech.
0066-4189,
32
, pp.
779
811
.
32.
Jebauer
,
S.
, and
Czerwinska
,
J.
, 2007, “
Implementation of Velocity Slip and Temperature Jump Boundary Conditions for Microfluidic Devices
,” Polish Academy of Sciences, IFTR Report.
33.
Lewandowski
,
T.
,
Jebauer
,
S.
,
Czerwinska
,
J.
, and
Doerffer
,
P.
, 2009, “
Entrance Effects in Microchannel Gas Flow
,”
J. Therm. Sci.
1003-2169,
18
(
4
), pp.
345
352
.
34.
Beskok
,
A.
, and
Karniadakis
,
G. E.
, 1999, “
A Model for Flows in Channels, Pipes, and Ducts at Micro and Nano Scales
,”
Microscale Thermophys. Eng.
1089-3954,
3
(
1
), pp.
43
77
.
35.
Jebauer
,
S.
, and
Czerwinska
,
J.
, 2008, “
Slip Flow Structures in Confined Geometries
,”
Proceedings of the Sixth International ASME Conference ICNMM2008
, Darmstadt, Germany.
36.
Shih
,
J. C.
,
Ho
,
C. M.
,
Liu
,
J.
, and
Tai
,
Y. C.
, 1995, “
Non-Linear Pressure Distribution in Uniform Microchannels
,”
ASME AMD-MD
,
238
, pp.
51
56
.
37.
Hong
,
C.
, and
Asako
,
Y.
, 2007, “
Heat Transfer Characteristics of Gaseous Flows in a Microchannel and a Microtube With Constant Wall Temperature
,”
Numer. Heat Transfer, Part A
1040-7782,
52
(
3
), pp.
219
238
.
38.
Sunarso
,
A.
,
Yamamoto
,
T.
, and
Mori
,
N.
, 2007, “
Numerical Analysis of Wall Slip Effects on Flow of Newtonian and Non-Newtonian Fluids in Macro and Micro Contraction Channels
,”
ASME J. Fluids Eng.
0098-2202,
129
(
1
), pp.
23
30
.
39.
Rebrov
,
A. K.
,
Morozov
,
A. A.
,
Plotnikov
,
M. Yu.
,
Timoshenko
,
N. I.
, and
Maltsev
,
V. A.
, 2003, “
Determination of Accommodation Coefficients of Translational and Internal Energy Using a Thin Wire in a Free-Molecular Flow
,”
Rev. Sci. Instrum.
0034-6748,
74
(
2
), pp.
1103
1106
.
40.
Yu
,
S.
, and
Ameel
,
T. A.
, 2001, “
A Universal Entrance Nusselt Number for Internal Slip Flow
,”
Int. Commun. Heat Mass Transfer
0735-1933,
28
(
7
), pp.
905
910
.
You do not currently have access to this content.