This paper proposes mathematical models of the microwave heating process of dielectric materials filled in a rectangular waveguide with a resonator. A microwave system supplies a monochromatic wave in a fundamental mode (TE10 mode). A convection exchange at the upper surface of the sample is considered. The effects of resonator distance and operating frequency on distributions of electromagnetic fields inside the waveguide, temperature profile, and flow pattern within the sample are investigated. The finite-difference time-domain method is used to determine the electromagnetic field distribution in a microwave cavity by solving the transient Maxwell equations. The finite control volume method based on the SIMPLE algorithm is used to predict the heat transfer and fluid flow model. Two dielectric materials, saturated porous medium and water, are chosen to display microwave heating phenomena. The simulation results agree well with the experimental data. Based on the results obtained, the inserted resonator has a strong effect on the uniformity of temperature distributions, depending on the penetration depth of microwave. The optimum distances of the resonator depend greatly on the operating frequencies.

1.
Ayappa
,
K. G.
,
Davis
,
H. T.
,
Crapiste
,
G.
,
Davis
,
E. A.
, and
Gordon
,
J.
, 1991, “
Microwave Heating: An Evaluation of Power Formulations
,”
Chem. Eng. Sci.
0009-2509,
46
(
4
), pp.
1005
1016
.
2.
Ayappa
,
K. G.
,
Davis
,
H. T.
,
Davis
,
E. A.
, and
Gordon
,
J.
, 1992, “
Two-Dimensional Finite Element Analysis of Microwave Heating
,”
AIChE J.
0001-1541,
38
(
10
), pp.
1577
1592
.
3.
Datta
,
A. K.
,
Prosetya
,
H.
, and
Hu
,
W.
, 1992, “
Mathematical Modeling of Batch Heating of Liquids in a Microwave Cavity
,”
J. Microwave Power Electromagn. Energy
0832-7823,
27
, pp.
38
48
.
4.
Jia
,
X.
, and
Bialkowski
,
M.
, 1992, “
Simulation of Microwave Field and Power Distribution in a Cavity by a Three Dimension Finite Element Method
,”
J. Microwave Power Electromagn. Energy
0832-7823,
27
(
1
), pp.
11
22
.
5.
Liu
,
F.
,
Turner
,
I.
, and
Bialowski
,
M.
, 1994, “
A Finite-Difference Time-Domain Simulation of Power Density Distribution in a Dielectric Loaded Microwave Cavity
,”
J. Microwave Power Electromagn. Energy
0832-7823,
29
(
3
), pp.
138
147
.
6.
Ayappa
,
K. G.
,
Brandon
,
S.
,
Derby
,
J. J.
,
Davis
,
H. T.
, and
Davis
,
E. A.
, 1994, “
Microwave Driven Convection in a Square Cavity
,”
AIChE J.
0001-1541,
40
(
7
), pp.
1268
1272
.
7.
Zhang
,
Q.
,
Jackson
,
T. H.
, and
Ungan
,
A.
, 2000, “
Numerical Modeling of Microwave Induced Natural Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2141
2154
.
8.
Clemens
,
J.
, and
Saltiel
,
C.
, 1996, “
Numerical Modeling of Materials Processing in Microwave Furnaces
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
8
), pp.
1665
1675
.
9.
Chatterjee
,
S.
,
Basak
,
T.
, and
Das
,
S. K.
, 2007, “
Microwave Driven Convection in a Rotating Cylindrical Cavity: A Numerical Study
,”
J. Food. Eng.
0260-8774,
79
, pp.
1269
1279
.
10.
Zhu
,
J.
,
Kuznetsov
,
A. V.
, and
Sandeep
,
K. P.
, 2007, “
Mathematical Modeling of Continuous Flow Microwave Heating of Liquid (Effect of Dielectric Properties and Design Parameters)
,”
Int. J. Therm. Sci.
1290-0729,
46
, pp.
328
341
.
11.
Zhu
,
J.
,
Kuznetsov
,
A. V.
, and
Sandeep
,
K. P.
, 2007, “
Numerical Simulation of Forced Convection in a Duct Subjected to Microwave Heating
,”
Heat Mass Transfer
0947-7411,
43
, pp.
255
264
.
12.
Zhu
,
J.
,
Kuznetsov
,
A. V.
, and
Sandeep
,
K. P.
, 2008, “
Investigation of a Particulate Flow Containing Spherical Particles Subjected to Microwave Heating
,”
Heat and Mass Transfer
,
44
, pp.
481
493
.
13.
Zhu
,
J.
,
Kuznetsov
,
A. V.
, and
Sandeep
,
K. P.
, 2007, “
Numerical Modeling of a Moving Particle in a Continuous Flow Subjected to Microwave Heating
,”
Numer. Heat Transfer, Part A
1040-7782,
52
, pp.
417
439
.
14.
Rattanadecho
,
P.
,
Aoki
,
K.
, and
Akahori
,
M.
, 2001, “
A Numerical and Experimental Study of Microwave Drying Using a Rectangular Waveguide
,”
Drying Technology An International Journal
,
19
(
9
), pp.
2209
2234
.
15.
Ratanadecho
,
P.
,
Aoki
,
K.
, and
Akahori
,
M.
, 2002, “
A Numerical and Experimental Investigation of the Modeling of Microwave Heating for Liquid Layers Using a Rectangular Waveguide (Effects of Natural Convection and Dielectric Properties)
,”
Appl. Math. Model.
0307-904X,
26
(
3
), pp.
449
472
.
16.
Rattanadecho
,
P.
,
Aoki
,
K.
, and
Akahori
,
M.
, 2002, “
Experimental Validation of a Combined Electromagnetic and Thermal Model for a Microwave Heating of Multi-Layered Materials Using a Rectangular Waveguide
,”
ASME J. Heat Transfer
0022-1481,
124
(
5
), pp.
992
996
.
17.
Rattanadecho
,
P.
, 2006, “
The Simulation of Microwave Heating of Wood Using a Rectangular Wave Guide: Influence of Frequency and Sample Size
,”
Chem. Eng. Sci.
0009-2509,
61
(
14
), pp.
4798
4811
.
18.
Curet
,
S.
,
Rouaud
,
O.
, and
Boillereaux
,
L.
, 2008, “
Microwave Tempering and Heating a Single-Mode Cavity: Numerical and Experimental Investigations
,”
Chem. Eng. Process.
0255-2701,
47
, pp.
1656
1665
.
19.
Tada
,
S.
,
Echigo
,
R.
, and
Yoshida
,
H.
, 1998, “
Numerical Analysis of Electromagnetic Wave in a Partially Loaded Microwave Applicator
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
709
718
.
20.
Basak
,
T.
,
Aparna
,
K.
,
Meenakshi
,
A.
, and
Balakrishnan
,
A. R.
, 2006, “
Effect of Ceramic Supports on Microwave Processing of Porous Food Samples
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4325
4339
.
21.
Pakdee
,
W.
, and
Rattanadecho
,
P.
, 2006, “
Unsteady Effects on Natural Convective Heat Transfer Through Porous Media in Cavity Due to Top Surface Partial Convection
,”
Appl. Therm. Eng.
1359-4311,
26
(
17–18
), pp.
2316
2326
.
22.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Henisphere
,
New York
.
23.
Cha-um
,
W.
,
Pakdee
,
W.
, and
Rattanadecho
,
P.
, 2009, “
Experimental Analysis of Microwave Heating of Dielectric Materials Using a Rectangular Wave Guide (MODE:TE10) (Case Study: Water Layer and Saturated Porous Medium)
,”
Exp. Therm. Fluid Sci.
0894-1777,
33
(
3
), pp.
472
481
.
You do not currently have access to this content.