Two-phase flows in an oscillating heat pipe (OHP) charged with deionized (DI) water and a nanofluid (0.268% v/v) were experimentally investigated. The OHP was made of quartz glass tube (with an inner diameter of 3.53 mm and an outer diameter of 5.38 mm) and coated with a transparent heating film in its evaporating section. The internal two-phase flows at different heat loads were recorded by a charge-coupled device (CCD) camera. Only column flow was observed in the DI water OHP while in the nanofluid OHP the flow first was column, then slug and annular flows as the heat load was steadily increased. Heat transfer in the OHP was strongly related to the two-phase regime. The flow regime transitions effectively increased the operating allowable heat loads in the nanofluid OHP two- to threefold relative to the DI water OHP. The nanofluid OHP had a much lower thermal resistance than the DI water OHP with the most effective heat transfer in the nanofluid OHP occurring in the slug flow regime.

1.
Khandekar
,
S.
, and
Groll
,
M.
, 2004, “
An Insight Into Thermo-Hydrodynamic Coupling in Closed-Loop Pulsating Heat Pipes
,”
Int. J. Therm. Sci.
1290-0729,
43
, pp.
13
20
.
2.
Liang
,
S. B.
, and
Ma
,
H. B.
, 2003, “
Oscillation Motions in an Oscillating Heat Pipe
,”
Int. Commun. Heat Mass Transfer
0735-1933,
43
(
9
), pp.
493
500
.
3.
Ma
,
H. B.
,
Hanlon
,
M. A.
, and
Chen
,
C. L.
, 2005, “
An Investigation of Oscillating Motions in a Miniature Pulsating Heat Pipe
,”
Microfluid. Nanofluid.
1613-4982,
1
(
4
), pp.
334
342
.
4.
Ma
,
H. B.
,
Borgmeyer
,
B.
,
Cheng
,
P.
, and
Zhang
,
Y.
, 2008, “
Heat Transport Capability in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
081501
.
5.
Borgmeyer
,
B.
,
Wilson
,
C.
,
Winholtz
,
R. A.
,
Ma
,
H. B.
,
Jacobson
,
D.
, and
Hussey
,
D.
, 2010, “
Heat Transport Capability and Fluid Flow Neutron Radiography of Three-Dimensional Oscillating Heat Pipes
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
061502
.
6.
Akachi
,
H.
, 1990, “
Structure of a Heat Pipe
,” U.S. Patent No. 4,921,041.
7.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nano-Tube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
2252
2254
.
8.
Choi
,
S. U. S.
, 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Siginer
and
H. P.
Wang
, eds.,
ASME
,
New York
, FED-Vol.
231
/MD-Vol. 66, pp.
99
105
.
9.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
567
574
.
10.
Patel
,
H. E.
,
Das
,
S. K.
,
Sundararajan
,
T.
,
Nair
,
A. S.
,
George
,
B.
, and
Pradeep
,
T.
, 2003, “
Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
2931
2933
.
11.
Xuan
,
Y.
, and
Li
,
Q.
, 2003, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
151
155
.
12.
Maiga
,
S. E.
,
Nguyen
,
C. T.
,
Galanis
,
N.
, and
Roy
,
G.
, 2004, “
Heat Transfer Behaviors of Nanofluids in a Uniformly Heated Tube
,”
Superlattices Microstruct.
0749-6036,
35
, pp.
543
557
.
13.
Boungirno
,
J.
, 2006, “
Convective Heat Transfer Enhancement in Nanofluids
,”
Proceedings of the 18th National and Seventh ISHMT-ASME Heat and Mass Transfer Conference
, IIT Guwahati, India, Jan. 3, pp.
2417
2423
.
14.
Heris
,
S. Z.
,
Esfahany
,
M. N.
, and
Etemad
,
S. Gh.
, 2007, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
203
210
.
15.
Mirmasoumi
,
S.
, and
Behzadmehr
,
A.
, 2008, “
Numerical Study of Laminar Mixed Convection of a Nanofluid in a Horizontal Tube Using Two-Phase Mixture Model
,”
Appl. Therm. Eng.
1359-4311,
28
, pp.
717
727
.
16.
Wen
,
D. S.
,
Lin
,
G. P.
,
Vafaei
,
S.
, and
Zhang
,
K.
, 2009, “
Review of Nanofluids for Heat Transfer Applications
,”
Particuology
,
7
, pp.
141
150
.
17.
Wen
,
D. S.
,
Ding
,
Y.
, and
Williams
,
R. L.
, 2006, “
Pool Boiling Heat Transfer of Aqueous Based TiO2 Nanofluids
,”
J. Enhanced Heat Transfer
1065-5131,
13
, pp.
231
244
.
18.
Liu
,
Z. H.
,
Xiong
,
J. G.
, and
Bao
,
R.
, 2007, “
Boiling Heat Transfer Characteristics of Nanofluids in a Flat Heat Pipe Evaporator With Micro-Grooved Heating Surface
,”
Int. J. Multiphase Flow
0301-9322,
33
, pp.
1284
1295
.
19.
Park
,
K. J.
, and
Jung
,
D.
, 2007, “
Enhancement of Nucleate Boiling Heat Transfer Using Carbon Nanotubes
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4499
4502
.
20.
Bang
,
I. C.
, and
Chang
,
S. H.
, 2005, “
Boiling Heat Transfer Performance and Phenomena of Al2O3-Water Nano-Fluids From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2407
2419
.
21.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2007, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4105
4116
.
22.
Chopkar
,
M.
,
Das
,
A. K.
,
Manna
,
I.
, and
Das
,
P. K.
, 2008, “
Pool Boiling Heat Transfer Characteristics of ZrO2-Water Nanofluids From a Flat Surface in a Pool
,”
Heat Mass Transfer
0947-7411,
44
, pp.
999
1004
.
23.
Narayan
,
G. P.
,
Anoop
,
K. B.
, and
Das
,
S. K.
, 2007, “
Mechanism of Enhancement/Deterioration of Boiling Heat Transfer Using Stable Nanoparticle Suspensions Over Vertical Tubes
,”
J. Appl. Phys.
0021-8979,
102
, p.
074317
.
24.
Kim
,
S. J.
,
Bang
,
I. C.
, and
Buongiorno
,
J.
, 2006, “
Effects of Nanoparticle Deposition on Surface Wettability Influencing Boiling Heat Transfer in Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
153107
.
25.
Kim
,
H. D.
,
Kim
,
J.
, and
Kim
,
M. H.
, 2007, “
Experimental Studies on CHF Characteristics of Nano-Fluids at Pool Boiling
,”
Int. J. Multiphase Flow
0301-9322,
33
, pp.
691
706
.
26.
You
,
S. M.
, and
Kim
,
J. H.
, 2003, “
Effect of Nanoparticles on the Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
0003-6951,
83
(
16
), pp.
3374
3376
.
27.
Vassallo
,
P.
,
Kumar
,
R.
, and
D’Amico
,
S.
, 2004, “
Pool Boiling Heat Transfer Experiments in Silica-Water of Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
2
), pp.
407
411
.
28.
Kim
,
H.
,
Ahn
,
H. S.
, and
Kim
,
M. H.
, 2010, “
On the Mechanism of Pool Boiling Critical Heat Flux Enhancement in Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
061501
.
29.
Ma
,
H. B.
,
Wilson
,
C.
,
Borgmeyer
,
B.
,
Park
,
K.
,
Yu
,
Q.
,
Choi
,
U. S.
, and
Tirumala
,
M.
, 2006, “
Nanofluid Effect on the Heat Transport Capability in an Oscillating Heat Pipe
,”
Appl. Phys. Lett.
0003-6951,
88
(
14
), p.
143116
.
30.
Ma
,
H. B.
,
Wilson
,
C.
,
Yu
,
Q.
,
Park
,
K.
,
Choi
,
U. S.
, and
Tirumala
,
M.
, 2006, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Transfer
0022-1481,
128
(
11
), pp.
1213
1216
.
31.
Park
,
K.
, and
Ma
,
H. B.
, 2007, “
Nanofluid Effect on Heat Transport Capability in a Well-Balanced Oscillating Heat Pipe
,”
J. Thermophys. Heat Transfer
0887-8722,
21
(
2
), pp.
443
445
.
32.
Boda
,
D.
,
Chan
,
K. Y.
,
Henderson
,
D.
,
Wasan
,
D. T.
, and
Nikolov
,
A. D.
, 1999, “
Structure and Pressure of a Hard Sphere Fluid in a Wedge-Shaped Cell or Meniscus
,”
Langmuir
0743-7463,
15
, pp.
4311
4313
.
33.
Tata
,
B. V. R.
,
Boda
,
D.
,
Henderson
,
D.
,
Nikolov
,
A.
, and
Wasan
,
D. T.
, 2000, “
Structure of Charged Colloids Under a Wedge Confinement
,”
Phys. Rev. E
1063-651X,
62
(
3
), pp.
3875
3881
.
34.
Trokhymchuk
,
A.
,
Henderson
,
D.
,
Nikolov
,
A. D.
, and
Wasan
,
D. T.
, 2001, “
A Simple Calculation of Structural and Depletion Forces for Fluids/Suspensions Confined in a Film
,”
Langmuir
0743-7463,
17
, pp.
4940
4947
.
35.
Wasan
,
D. T.
, and
Nikolov
,
A. D.
, 2003, “
Spreading of Nanofluids on Solids
,”
Nature (London)
0028-0836,
423
, pp.
156
159
.
36.
Chengara
,
A.
,
Nikolov
,
A. D.
,
Wasan
,
D. T.
,
Trokhymchuk
,
A.
, and
Henderson
,
D.
, 2004, “
Spreading of Nanofluids Driven by the Structural Disjoining Pressure Gradient
,”
J. Colloid Interface Sci.
0021-9797,
280
, pp.
192
201
.
37.
Khandekar
,
S.
,
Charoensawan
,
P.
,
Groll
,
M.
, and
Terdtoon
,
P.
, 2003, “
Closed Loop Pulsating Heat Pipes Part B: Visualization and Semi-Empirical Modeling
,”
Appl. Therm. Eng.
1359-4311,
23
, pp.
2021
2033
.
38.
Jackson
,
J.
, 2007, “
Investigation Into the Pool-Boiling Characteristics of Gold Nanofluids
,” MS thesis, University of Missouri-Columbia, Columbia, MO.
39.
Wang
,
J. Z.
, 2005, “
Molecular Dynamics Simulation of Bubble Nucleation and the Effect of Nanoparticle on Nucleation
,” Ph.D. thesis, Power Engineering and Engineering Thermophysics, Tsinghua University, Beijing, China.
40.
Qu
,
J.
,
Wu
,
H. Y.
, and
Cheng
,
P.
, 2010, “
Thermal Performance of an Oscillating Heat Pipe With Al2O3-Water Nanofluids
,”
Int. Commun. Heat Mass Transfer
0735-1933,
37
, pp.
111
115
.
41.
Bresme
,
F.
, and
Oettel
,
M.
, 2007, “
Nanoparticles at Fluid Interfaces
,”
J. Phys.: Condens. Matter
0953-8984,
19
, pp.
1
33
.
42.
Fainerman
,
V. B.
,
Kovalchuk
,
V. I.
,
Lucassen-Reynders
,
E. H.
,
Grigoriev
,
D. O.
,
Ferri
,
J. K.
,
Leser
,
M. E.
,
Michel
,
M.
,
Miller
,
R.
, and
Mhwald
,
H.
, 2006, “
Surface-Pressure Isotherms of Monolayers Formed by Microsize and Nanosize Particles
,”
Langmuir
0743-7463,
22
(
4
), pp.
1701
1705
.
43.
Okubo
,
T.
, 1995, “
Surface Tension of Structured Colloidal Suspensions of Polystyrene and Silica Spheres at the Air-Water Interface
,”
J. Colloid Interface Sci.
0021-9797,
171
, pp.
55
62
.
44.
Miller
,
R.
,
Fainerman
,
V. B.
,
Kovalchuk
,
V. I.
,
Grigoriev
,
D. O.
,
Leser
,
M. E.
, and
Michel
,
M.
, 2006, “
Composite Interfacial Layers Containing Micro-Size and Nano-Size Particles
,”
Adv. Colloid Interface Sci.
0001-8686,
128-130
, pp.
17
26
.
This content is only available via PDF.
You do not currently have access to this content.