This study investigates a V-shaped corrugated carbon foam heat sink for thermal management of electronics with forced air convection. Experiments were conducted to determine the heat sink performance in terms of heat transfer coefficient and pressure drop. The test section, with overall dimensions of 51mmL×51mmW×19mmH, enabled up to 166 W of heat dissipation, and 3280W/m2K and 2210W/m2K heat transfer coefficients, based on log mean and air inlet temperatures, respectively, at 7.8 m/s air flow speed, and 1320 Pa pressure loss. Compared to a solid carbon foam, the V-shaped corrugated structure enhances the heat transfer, and at the same time reduces the flow resistance. Physical mechanisms underlying the observed phenomena are briefly explained. With benefits that potentially can reduce overall weight, volume, and cost of the air-cooled electronics, the present V-shaped corrugated carbon foam emerges as an alternative heat sink.

1.
Azar
,
K.
, 2003, “
Cooling Technology Options
,”
Electronics Cooling
,
9
, pp.
10
14
.
2.
DARPA Solicitation BAA 08-15, 2008.
3.
Gallego
,
N. C.
, and
Klett
,
J. W.
, 2003, “
Carbon Foams for Thermal Management
,”
Carbon
0008-6223,
41
, pp.
1461
1466
.
4.
Williams
,
Z. A.
, and
Roux
,
J. A.
, 2006, “
Graphite Foam Thermal Management of a High Packing Density Array of Power Amplifiers
,”
ASME J. Electron. Packag.
1043-7398,
128
, pp.
456
465
.
5.
Straatman
,
A. G.
,
Gallego
,
N. C.
,
Thompson
,
B. E.
, and
Hangan
,
H.
, 2006, “
Thermal Characterization of Porous Carbon Foam—Convection in Parallel Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
1991
1998
.
6.
Klett
,
J. W.
, 1999, “
High Thermal Conductivity Mesophase Pitch-Derived Graphitic Foams
,”
Compos. Manuf.
0956-7143,
14
, pp.
1
5
.
7.
Leong
,
K. C.
, and
Jin
,
L. W.
, 2006, “
Effect of Oscillatory Frequency on Heat Transfer in Metal Foam Heat Sinks of Various Pore Densities
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
671
681
.
8.
Klett
,
J. W.
,
McMillan
,
A. D.
,
Gallego
,
N. C.
, and
Walls
,
C. A.
, 2004, “
The Role of Structure on the Thermal Properties of Graphitic Foams
,”
J. Mater. Sci.
0022-2461,
39
, pp.
3659
3676
.
9.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2008, “
A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
3701
3711
.
10.
Lee
,
D. Y.
, and
Vafai
,
K.
, 1999, “
Analytical Characterization and Conceptual Assessment of Solid and Fluid Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
423
435
.
11.
Vrable
,
D. L.
, 2003, “
Heat Exchanger Design Consideration Using Carbon Foam Materials
,”
14th International Conference on Composite Materials
, San Diego, CA, ICCM 14.
12.
Jakob
,
M.
, 1957,
Heat Transfer
,
Wiley
,
New York
.
13.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
, 2007,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
.
14.
Kays
,
W. M.
, and
London
,
A. L.
, 1964,
Compact Heat Exchangers
, 2nd ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.