Natural heat convection within an annular annulus bounded by two horizontal vertically eccentric long cylinders has been investigated. The annulus inner wall has been heated and maintained at either constant wall temperature CWT or constant heat flux CHF while the outer wall is cooled and maintained at constant temperature. The induced buoyancy driven flow and the associated heat convection are predicted through solving numerically the full conservation equations for mass, momentum, and energy using Fourier spectral method. Beside Rayleigh and Prandtl numbers, the heat convection process in the annulus depends on the annulus radius ratio and eccentricity (normalized by the radius difference). The study considered a moderate range of Rayleigh numbers up to 105 while Prandtl number is fixed at 0.7. The radius ratio is considered up to 3.2 while the eccentricity is varied between − 0.65 and + 0.65. The study has revealed that at certain radius ratio for a given Rayleigh number and eccentricity, the heat transfer is minimum in case of CWT and the mean inner wall temperature is maximum in case of CHF. The study has also shown, in the range considered for controlling parameters, that multiple convection cells only exist in case of CWT and only for positive eccentricity. Moreover, the study has shown that the present numerical solution of the pure conduction problem is almost identical with the newly presented analytical solution which confirms the high accuracy of the numerical solution.

References

1.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
, 1976, “
An Experimental and Theoretical Study of Natural Convection in the Annulus Between Horizontal Concentric Cylinders
,”
J. Fluid Mech.
,
74
(
4
), pp.
695
719
.
2.
Farouk
,
B.
, and
Güçeri
,
S. I.
, 1982, “
Laminar and Turbulent Natural Convection in the Annulus Between Horizontal Concentric Cylinders
,”
ASME J. Heat Transfer
,
104
, pp.
631
636
.
3.
Hessami
,
M. A.
,
Pollard
,
A.
,
Rowe
,
R. D.
, and
Ruth
,
D. W.
, 1985,”
A Study of Free Convective Heat Transfer in a Horizontal Annulus With a Large Radii Ratio
,”
ASME J. Heat Transfer
,
107
, pp.
603
610
.
4.
Mahony
,
D. N.
,
Kumar
,
R.
, and
Bishop
,
E. H.
, 1986, “
Numerical Investigation of Variable Property Effects on Laminar Natural Convection of Gases Between Two Horizontal Isothermal Concentric Cylinders
,”
ASME J. Heat Transfer
,
108
, pp.
783
789
.
5.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
, 1978, “
An Experimental Study of Natural Convection Heat Transfer in Concentric and Eccentric Horizontal Cylindrical Annuli
,”
ASME J. Heat Transfer
,
100
(
4
), pp.
635
640
.
6.
Yao
,
L. S.
, 1980, “
Analysis of Heat Transfer in Slightly Eccentric Annuli
,”
ASME J. Heat Transfer
,
102
, pp.
279
284
.
7.
Badr
,
H. M.
, 1983, “
Study of Laminar Free Convection Between Two Eccentric Horizontal Tubes
,”
Trans. Can. Soc. Mech. Eng.
,
7
(
4
), pp.
191
198
.
8.
Projahn
,
U.
, and
Beer
,
H.
, 1985, “
Prandtl Number Effects on Natural Convection Heat Transfer in Concentric and Eccentric in Horizontal Cylindrical Annuli
,”
Heat and Mass Transfer
,
19
, pp.
249
254
.
9.
Prusa
,
J.
, and
Yao
,
L. S.
, 1983, “
Natural Convection Heat Transfer Between Eccentric Horizontal Cylinders
,”
ASME J. Heat Transfer
,
105
, pp.
108
116
.
10.
Naylor
,
D.
,
Badr
,
H. M.
, and
Tarasuk
,
J. D.
, 1989,” Experimental and Numerical Study of Natural Convection Between Two Eccentric Tubes,”
Int. J. Heat Mass Transfer
,
32
(
1
), pp.
171
181
.
11.
Guj
,
G.
, and
Stella
,
F.
, 1995, “
Natural Convection in Horizontal Eccentric Annuli: Numerical Study
,”
Numer. Heat Transfer
27
, pp.
89
105
.
12.
Wang
,
Y. Z.
, and
Bau
,
H. H.
, 1988, “
Low Rayleigh Number Convection in Horizontal, Eccentric Annuli
,”
Phys. Fluids
,
31
(
9
), pp.
2467
2473
.
13.
Cho
,
C. H.
,
Chang
,
K. S.
, and
Park
,
K. H.
, 1982, “
Numerical Simulation of Natural Convection in Concentric and Eccentric Horizontal Annuli
,”
ASME J. Heat Transfer
,
104
, pp.
624
630
.
14.
Pepper
,
D. W.
, and
Cooper
,
R. E.
, 1983, “
Numerical Solution of Natural Convection in Eccentric Annulus
,”
AIAA
,
21
, pp.
1331
1337
.
15.
Wang
S.
, 1995, “
An Experimental and Numerical Study of Natural Convection Heat Transfer in Horizontal Annuli Between Eccentric Cylinders
,”
J. Therm. Sci.
,
4
(
1
), pp.
38
43
.
16.
Shu
,
C.
, and
Wu
,
Y. L.
, 2002, “
Domain-Free Discretization Method for Doubly Connected Domain and Its Application to Simulate Natural Nonvection in Eccentric Annuli
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
1827
1841
.
17.
Lee
,
T. S.
,
Hu
,
G. S.
, and
Shu
,
C.
, 2002, “
Application of GDQ Method for the Study of Natural Convection in Horizontal Eccentric Anuuli
,”
Numer. Heat Transfer, Part A
,
4
, pp.
803
815
.
18.
Kumar
,
R.
, 1988, “
Study of Natural Convection in Horizontal Annuli
,”
Int. J. Heat Mass Transfer
,
31
(
6
), pp.
1137
1148
.
19.
Castrejon
,
A.
, and
Spalding
,
D. B.
, 1988, “
An Experimental and Theoretical Study of Transient Free-Convection Flow Between Horizontal Concentric Cylinders
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
273
284
.
20.
Yoo
,
J.-S.
, 2003, “
Dual Free-Convective Flows in a Horizontal Annulus With a Constant Heat Flux Wall
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2499
2503
.
21.
Van de Sande
,
E.
, and
Hamer
,
B. J. G.
, 1979, “
Steady and Transient Natural Convection in Enclosures Between Horizontal Circular Cylinders (Constant Heat Flux)
,”
Int. J. Heat Mass Transfer
,
22
(
3
), pp.
361
370
.
22.
Glakpe
,
E. K.
,
Watkins
,
C. B.
, Jr., and
Cannon
,
J. N.
, 1986, “
Constant Heat Flux Solutions for Natural Convection Between Concentric and Eccentric Horizontal Cylinders
,”
Num. Heat Transfer
,
10
(
3
), pp.
279
295
.
23.
Ho
,
C. J.
,
Lin
,
Y. H.
, and
Chen
,
T. C.
, 1989, “
A Numerical Study of Natural Convection in Concentric and Eccentric Horizontal Cylindrical Annuli With Mixed Boundary Conditions
,”
Int. J. Heat Fluid Flow
,
10
(
1
), pp.
40
47
.
24.
Badr
,
H. M.
, and
Dennis
,
S. C. R.
, 1985, “
Time-Dependent Viscous Flow Past an Impulsively Started Rotating and Translating Circular Cylinder
,”
J. Fluid Mech.
,
158
, pp.
447
488
.
25.
Mahfouz
,
F. M.
and
Badr
,
H. M.
, 2000, “
Flow Structure in the Wake of a Rotationally Oscillating Cylinder
,”
ASME J. Fluids Eng.
,
122
, pp.
290
301
.
26.
Chung
,
J. D.
,
Kim
,
C.-J.
,
Yoo
,
H.
, and
Lee
,
J. S.
, 1999, “
Numerical Investigation on the Bifurcative Natural Convection in a Horizontal Concentric Annulus
,”
Numer. Heat Transfer, Part A
,
36
, pp.
291
307
.
27.
Mahfouz
,
F. M.
, and
Badr
,
H. M.
, 2009, “
Heat Convection Between Two Confocal Elliptic Tubes Placed at Different Orientations
,”
Adv. Appl. Math. Mech.
,
1
(
5
), pp.
639
663
.
28.
Powe
,
I. R. E.
,
Carley
,
C. T.
, and
Bishop
,
E. H.
, 1969, ”
Free Convective Flow Pattern in Cylindrical Annuli
,”
ASME J. Heat Transfer
,
91
, pp.
310
314
.
29.
Cheddadi
,
A.
,
Caltagirone
,
J. P.
,
Mojtabi
,
A.
, and
Vafai
,
K.
, 1992, “
Free Two-Dimensional Convective Bifurcation in a Horizontal Annulus
,”
ASME J. Heat Transfer
,
114
, pp.
99
106
.
You do not currently have access to this content.