Thermoelectric elements, made of semiconductor slices laminated onto highly conductive interconnector materials, are termed composite thermoelectric device (TED). An integrated TED is a composite TED with the interconnector designed as an internal heat exchanger with flow channels directing the working fluid between the source and element legs. In this work, novel composite and integrated TEDs are proposed as an alternative to conventional TEDs, and their performance in terms of power output P0, heat input Qh, conversion efficiency η, and the produced electrical current I is studied using analytical solutions. The top and bottom surfaces of the TED are subjected to a temperature differential while the side surfaces are exposed to either ambient or adiabatic conditions. An increment in temperature differential results in enhanced device performance. For a fixed temperature differential, the integrated TED shows nearly an eight-fold increase in both P0 and Qh and a four-fold increase in I, whereas the composite TED shows approximately a two-fold increase in P0, Qh, and I when compared to the conventional TED values. Both novel TED designs have a minimal impact on efficiency predictions. However, an increase in semiconductor slice thickness resulted in an exponential decrease in P0, Qh, and I, and an exponential increase in η values and reaches a limit of conventional TED values. The effect of semiconductor slice thickness on η in the novel TEDs is remarkable when it is less than 1 mm. The change in ambient conditions via convective heat transfer coefficient has negligible effects on P0; however, a substantial change in η occurs when it is less than 100Wm-2K-1.

References

1.
Rowe
,
D. M.
, ed.,
2006
,
Thermoelectrics Handbook Macro to Nano
,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
.
2.
Rowe
,
D.
,
2006
, “
Thermoelectric Waste Heat Recovery as a Renewable Energy Source
,”
Int. J. Innov. Energy Syst. Power
,
1
(
1
), pp.
13
23
. Available at http://www.ijesp.com/Vol1No1/IJESP1-3Rowe.pdf
3.
Poudel
,
B.
,
Hao
,
Q.
,
Ma
,
Y.
,
Lan
,
Y.
,
Minnich
,
A.
,
Yu
,
B.
,
Yan
,
X.
,
Wang
,
D.
,
Muto
,
A.
,
Vashaee
,
D.
,
Chen
,
X.
,
Liu
,
J.
,
Dresselhaus
,
M. S.
,
Chen
,
G.
, and
Ren
,
Z.
,
2008
, “
High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
,”
Science
,
320
(
5876
), pp.
634
638
.10.1126/science.1156446
4.
Kaibe
,
H.
,
Aoyama
,
I.
,
Mukoujima
,
M.
,
Kanda
,
T.
,
Fujimoto
,
S.
,
Kurosawa
,
T.
,
Ishimabushi
,
H.
,
Ishida
,
K.
,
Rauscher
,
L.
,
Hata
,
Y.
, and
Sano
,
S.
,
2005
, “
Development of Thermoelectric Generating Stacked Modules Aiming for 15% of Conversion Efficiency
,”
International Conference on Thermoelectrics
,
IEEE
, pp.
242
247
.10.1109/ICT.2005.1519929
5.
Punnachaiya
,
S.
,
Kovitcharoenkul
,
P.
, and
Thong-aram
,
D.
,
2010
, “
Development of Low Grade Waste Heat Thermoelectric Power Generator
,”
Songklanakarin J. Sci. Technol
,
32
(
3
), pp.
307
313
. Available at http://www.doaj.org/doaj?func=openurl&genre=article&issn=01253395&date=2010&volume=32&issue=3&spage=307
6.
Liang
,
G.
,
Zhou
,
J.
, and
Huang
,
X.
,
2011
, “
Analytical Model of Parallel Thermoelectric Generator
,”
Appl. Energy
,
88
, pp.
5193
5199
.10.1016/j.apenergy.2011.07.041
7.
Caillat
,
T.
,
Fleurial
,
J. P.
,
Snyder
,
G. N.
,
Zoltan
,
A.
,
Zoltan
,
D.
, and
Borshchevsky
,
A.
,
1999
, “
Development of a High Efficiency Thermoelectric Unicouple for Power Generation Applications
,”
Proceedings of the 18th International Conference on Thermoelectric
s
,
IEEE
, pp.
473
476
.10.1109/ICT.1999.843433
8.
El-Genk
,
M. S.
,
Saber
,
H. H.
, and
Caillat
,
T.
,
2003
, “
Efficient Segmented Thermoelectric Unicouples for Space Power Applications
,”
Energy Convers. Manage.
,
44
, pp.
1755
1772
.10.1016/S0196-8904(02)00217-0
9.
Crane
,
D. T.
, and
Lagrandeur
,
J. W.
,
2010
, “
Progress Report on BSST-Led US Department of Energy Automotive Waste Heat Recovery Program
,”
J. Electron. Mater.
,
39
(
9
), pp.
2142
2148
.10.1007/s11664-009-0991-0
10.
Sherman
,
B.
,
Heikes
,
R. R.
, and
Ure
,
R. W.
, Jr.
,
1960
, “
Calculation of Efficiency of Thermoelectric Devices
,”
J. Appl. Phys.
,
31
(
1
), pp.
1
16
.10.1063/1.1735380
11.
Hsiao
,
Y.
,
Chang
,
W.
, and
Chen
,
S.
,
2010
, “
A Mathematic Model of Thermoelectric Module With Applications on Waste Heat Recovery From Automobile Engine
,”
Energy
,
35
, pp.
1447
1454
.10.1016/j.energy.2009.11.030
12.
Xiao
,
H.
,
Gou
,
X.
, and
Yang
,
S.
,
2011
, “
Detailed Modeling and Irreversible Transfer Process Analysis of a Multi-Element Thermoelectric Generator System
,”
J. Electron. Mater.
,
40
(
5
), pp.
1195
1201
.10.1007/s11664-011-1596-y
13.
Hodes
,
M.
,
2010
, “
Optimal Pellet Geometries for Thermoelectric Power Generation
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
2
), pp.
307
318
.10.1109/TCAPT.2009.2039934
14.
Yamashita
,
O.
,
2011
, “
Effect of Interface Layer on the Cooling Performance of a Single Thermoelement
,”
Appl. Energy
,
88
, pp.
3022
3029
.10.1016/j.apenergy.2011.03.017
15.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
John Wiley & Sons, Inc
,
Hoboken, NJ
.
16.
Angrist
,
S. W.
,
1982
,
Direct Energy Conversion
, 4th ed.,
Allyn and Bacon, Inc.
,
Boston
.
17.
Lide
,
D. R.
, ed.,
2009
,
Handbook of Chemistry and Physics
, 90th ed.,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.