Experimental results are presented for a full-coverage film cooling arrangement which simulates a portion of a gas turbine engine, with appropriate streamwise static pressure gradient. The test surface utilizes varying blowing ratio (BR) along the length of the contraction passage which contains the cooling hole arrangement. For the different experimental conditions examined, film cooling holes are sharp-edged and streamwise inclined either at 20 deg or 30 deg with respect to the liner surface. The film cooling holes in adjacent streamwise rows are staggered with respect to each other. Data are provided for turbulent film cooling, contraction ratios of 1, 3, 4, and 5, blowing ratios (at the test section entrance) of 2.0, 5.0, and 10.0, coolant Reynolds numbers Refc of 10,000–12,000, freestream temperatures from 75 °C to 115 °C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Nondimensional streamwise and spanwise film cooling hole spacings, X/D and Y/D, are 6, and 5, respectively. When the streamwise hole inclination angle is 20 deg spatially averaged and line-averaged adiabatic effectiveness values at each x/D location are about the same as the contraction ratio varies between 1, 3, and 4, with slightly higher values at each x/D location when the contraction ratio Cr is 5. For each contraction ratio, there is a slight increase in effectiveness when the blowing ratio is increased from 2.0 to 5.0 but there is no further substantial improvement when the blowing ratio is increased to 10.0. Overall, line-averaged and spatially averaged-adiabatic film effectiveness data, and spatially averaged heat transfer coefficient data are described as they are affected by contraction ratio, blowing ratio, hole angle α, and streamwise location x/D. For example, when α = 20 deg, the detrimental effects of mainstream acceleration are apparent since heat transfer coefficients for contraction ratios Cr of 3 and 5 are often higher than values for Cr = 1, especially for x/D > 100.

References

1.
Sasaki
,
M.
,
Takahara
,
K.
,
Kumagai
,
T.
, and
Hamano
,
M.
,
1979
, “
Film Cooling Effectiveness for Injection From Multirow Holes
,”
ASME J. Eng. Power
,
101
(
1
), pp.
101
108
.10.1115/1.3446430
2.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2007
, “
Investigation of Velocity Profiles for Effusion Cooling of a Combustor Liner
,”
ASME J. Turbomach.
,
129
(
3
), pp.
518
526
.10.1115/1.2720492
3.
Ligrani
,
P. M.
,
Goodro
,
M.
,
Fox
,
M.
, and
Moon
,
H.-K.
, 2012, “
Full-Coverage Film Cooling: Film Effectiveness and Heat Transfer Coefficients for Dense and Sparse Hole Arrays at Different Blowing Ratios
,”
ASME J. Turbomach.
, 134(6), p. 061039.10.1115/1.4006304
4.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2000
,
“Film-Cooling Holes With Expanded Exits: Near-Hole Heat Transfer Coefficeints,” Int. J. Heat Fluid Flow,”
21
, pp.
145
155
.
5.
Baldauf
,
S.
,
Schultz
,
A.
, and
Wittig
,
S.
,
2001
, “
High-Resolution Measurements of Local Heat Transfer Coefficients From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
749
757
.10.1115/1.1387245
6.
Baldauf
,
S.
,
Schultz
,
A.
, and
Wittig
,
S.
,
2001
, “
High-Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
758
765
.10.1115/1.1371778
7.
Bell
,
C. M.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
,
2000
, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
224
232
.10.1115/1.521484
8.
Yuen
,
C. H. N.
, and
Martinez-Botas
,
R. F.
,
2005
, “
Film Cooling Characteristics of Row of Round Holes at Various Streamwise Angles in a Crossflow: Part I. Effectiveness
,”
Int. J. Heat Mass Transfer
,
48
, pp.
4995
5016
.10.1016/j.ijheatmasstransfer.2005.05.019
9.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
,
2006
, “
Effect of Unheated Starting Lengths on Film Cooling Experiments
,”
ASME J. Turbomach.
,
128
(
3
), pp.
579
588
.10.1115/1.2184355
10.
Saumweber
,
C.
, and
Schulz
,
A.
,
2004
, “
Interaction of Film Cooling Rows: Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes
,”
ASME J. Turbomach.
,
126
(
2
), pp.
237
246
.10.1115/1.1731395
11.
Furukawa
,
T.
, and
Ligrani
,
P. M.
,
2002
, “
Transonic Film Cooling Effectiveness From Shaped Holes on a Simulated Turbine Airfoil
,”
J. Thermophys. Heat Transfer
,
16
, pp.
228
237
.10.2514/2.6672
12.
Chappell
,
J.
,
Ligrani
,
P. M.
,
Sreekanth
,
S.
,
Lucas
,
T.
, and
Vlasic
,
E.
,
2010
, “
Aerodynamic Performance of Suction-Side Gill Region Film Cooling
,”
ASME J. Turbomach.
,
132
(
3
), p.
031020
.10.1115/1.3151603
13.
Chappell
,
J.
,
Ligrani
,
P. M.
,
Sreekanth
,
S.
, and
Lucas
,
T.
,
2010
, “
Suction-Side Gill Region Film Cooling: Effects of Hole Shape and Orientation on Adiabatic Effectiveness and Heat Transfer Coefficient
,”
ASME J. Turbomach.
,
132
(
3
), p.
031022
.10.1115/1.3151600
14.
Mayle
,
R. E.
, and
Camarata
,
F. J.
,
1975
, “
Multihole Cooling Film Effectiveness and Heat Transfer
,”
ASME J. Heat Transfer
,
97
(
4
), pp.
534
538
.10.1115/1.3450424
15.
Leger
,
B.
,
Miron
,
P.
, and
Emidio
,
J. M.
,
2002
, “
Geometric and Aero-Thermal Influences on Multiholed Plate Temperature: Application on Combustor Wall
,”
Int. J. Heat Mass Transfer
,
46
, pp.
1215
1222
.10.1016/S0017-9310(02)00396-4
16.
Lin
,
Y.
,
Song
,
B.
,
Li
,
B.
,
Liu
,
G.
, and
Wu
,
Z.
,
2003
, “
Investigation of Film Cooling Effectiveness of Full-Coverage Inclined Multihole Walls With Different Hole Arrangements
,”
ASME
, Paper No. GT2003-38881.10.1115/GT2003-38881
17.
Roach
,
P. E.
,
1986
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.10.1016/0142-727X(87)90001-4
18.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2006
, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film-Cooled Endwall
,”
ASME J. Turbomach.
,
128
(
1
), pp.
43
52
.10.1115/1.2098788
19.
O'Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Ligrani
,
P. M.
, and
Friedrichs
,
S.
,
2011
, “
Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME J. Turbomach.
,
133
(
2
), p.
021028
.10.1115/1.4001236
20.
Anthony
,
R. J.
,
Oldfiend
,
M. L. G.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
,
1999
, “
Development of High-Density Arrays of Thin Film Heat Transfer Gauges
,” JSME Thermal Engineering Joint Conference, Paper No. AJTE99-6159.
21.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
,
“Describing Uncertainties in Single Sample Experiments
,
” Mech. Eng.
,
75
, pp.
3
8
.
22.
Moffat
,
R. J.
,
1988
,
“Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
23.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes With Varying Angles of Inclination and Orientation
,”
ASME J. Turbomach.
,
123
(
4
), pp.
781
787
.10.1115/1.1397306
24.
Burd
,
S. W.
, and
Simon
,
T. W.
,
1997
, “
The Influence of Coolant Supply Geometry on Film Coolant Exit Flow and Surface Adiabatic Effectiveness
,” ASME Paper No. 97-GT-25.
You do not currently have access to this content.