This study presents numerical simulations of forced convection heat transfer with parachute-shaped segmented flow. The particles are encapsulated phase-change material flowing with water through a square cross-section duct with iso-flux boundaries. The system is inspired by the gas exchange process in the alveolar capillaries between red blood cells and lung tissue. A numerical model is developed for the motion of elongated encapsulated phase-change particles along a channel in a particulate flow where particle diameters are comparable with the channel height. The heat transfer enhancement for the parachute-shaped particles is compared with that of the spherical particles. Results reveal that the snug movement of the particles has the key role in heat transfer efficiency. The parachute-shaped geometry produces small changes in the heat transfer coefficient compared to a spherical geometry. However, the parachute-shaped particle flow is more robust to changes in particle concentration inside the channel.

References

1.
Geim
,
A. K.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
,
Novoselov1
,
K. S.
,
Zhukov
,
A. A.
, and
Shapoval
,
S. Y.
,
2003
, “
Microfabricated Adhesive Mimicking Gecko Foot-Hair
,”
Nat. Mater.
,
2
, pp.
461
463
.10.1038/nmat917
2.
Vogel
,
S.
, and
Davis
,
K.
,
1998
,
Cats' Paws and Catapults: Mechanical Worlds of Nature and People
,
W.W. Norton
,
Norton, NY
.
3.
Chanute
,
O.
,
1997
,
Progress in Flying Machines
,
Dover
,
New York
.
4.
Glasheen
,
J.
, and
McMahon
,
T.
,
1996
, “
A Hydrodynamic Model of Locomotion in the Basilisk Lizard
,”
Nature
,
380
, 340–342.10.1038/380340a0
5.
Merrikh
,
A.
, and
Lage
,
J.
,
2005
, “
Effect of Blood Flow on Gas Transport in a Pulmonary Capillary
,”
ASME J. Biomech. Eng.
,
127
, pp.
432
439
.10.1115/1.1894322
6.
Merrikh
,
A.
, and
Lage
,
J.
,
2008
, “
Plasma Microcirculation in Alveolar Capillaries: Effect of Parachute-Shaped Red Cells on Gas Exchange
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5712
5720
.10.1016/j.ijheatmasstransfer.2008.04.016
7.
Merrikh
,
A.
, and
Lage
,
J.
,
2005
, “
The Role of Red Cell Movement on Alveolar Gas Diffusion
,”
J. Master Sci. Eng. Technol.
,
36
(
10
), pp.
497
504
.10.1002/mawe.200500908
8.
Halpern
,
D.
, and
Secomb
,
T.
,
1989
, “
The Squeezing of Red Blood Cells Through Capillaries With Near-Minimal Diameters
,”
J. Fluid Mech.
,
203
, pp.
381
400
.10.1017/S0022112089001503
9.
Bryant
,
S. C.
, and
Navari
,
R. M.
,
1974
, “
Effect of Plasma Proteins on Oxygen Diffusion in the Pulmonary Capillaries
,”
Microvasc. Res.
,
7
(
1
), pp.
120
130
.10.1016/0026-2862(74)90042-9
10.
Yoshimi
,
M.
, and
Moll
,
W.
,
1972
, “
The Diameter of Red Blood Cells When Flowing Through a Rapid Reaction Apparatus
,”
Respiration Physiol.
,
16
(
2
), pp.
259
266
.10.1016/0034-5687(72)90055-2
11.
Fung
,
Y. C.
,
1969
, “
Blood Flow in the Capillary Bed
,”
J. Biomech.
,
2
(
4
), pp.
353
372
.10.1016/0021-9290(69)90013-X
12.
Guido
,
S.
, and
Tomaiuolo
,
G.
,
2009
, “
Microconfined Flow Behavior of Red Blood Cells In Vitro
,”
C. R. Phys.
,
10
(
8
), pp.
751
763
.10.1016/j.crhy.2009.10.002
13.
Betticher
,
D. C.
,
Geiser
,
J.
, and
Tempini
,
A.
,
1991
, “
Lung Diffusing Capacity and Red Blood Cell Volume
,”
Respiration Physiol.
,
85
(
3
), pp.
271
278
.10.1016/0034-5687(91)90067-S
14.
Berger
,
S.
, and
King
,
W.
,
1980
, “
The Flow of Sickle-Cell Blood in the Capillaries
,”
Biophys. J.
,
29
(
1
), pp.
119
148
.10.1016/S0006-3495(80)85121-6
15.
Fung
,
Y.
,
1969
, “
Blood Flow in the Capillary Bed
,”
Biomech. Thermophys.
,
2
, pp.
353
372
.10.1016/0021-9290(69)90013-X
16.
Lee
,
J.
, and
Fung
,
Y.
,
1969
, “
Modeling Experiments of a Single Red Blood Cell Moving in a Capillary Blood Vessel
,”
Microvasc. Res.
,
1
, pp.
221
243
.10.1016/0026-2862(69)90025-9
17.
Zhao
,
S.
,
Xu
,
X.
,
Hughes
,
A.
,
Thom
,
S.
,
Stanton
,
A.
,
Ariff
,
B.
, and
Long
,
Q.
,
2000
, “
Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Arterial Bifurcation
,”
J. Biomech.
,
33
(
8
), pp.
975
984
.10.1016/S0021-9290(00)00043-9
18.
Himran
,
S.
,
Suwono
,
A.
, and
Mansoori
,
G. A.
,
1994
, “
Characterization of Alkanes and Paraffin Waxes for Application As Phase Change Energy Storage Medium
,”
Energy Sources Part A
,
16
(
1
), pp.
117
128
.10.1080/00908319408909065
19.
Peng
,
S.
,
Fuchs
,
A.
, and
Wirtz
,
R. A.
,
2004
, “
Polymeric Phase Change Composites for Thermal Energy Storage
,”
J. Appl. Poly. Sci.
,
93
(
3
), pp.
1240
1251
.10.1002/app.20578
20.
Hassanipour
,
F.
, and
Lage
,
J.
,
2010
, “
Preliminary Experimental Study of a Bio-Inspired Phase-Change Particle Capillary Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
53
, pp.
3300
3307
.10.1016/j.ijheatmasstransfer.2010.02.045
21.
Hassanipour
,
F.
, and
Lage
,
J.
,
2009
, “
Numerical Simulation of Capillary Convection With Encapsulated Phase Change Material
,”
J. Numer. Heat Transfer
, Part A,
55
(
10
), pp.
893
905
.10.1080/10407780902959381
You do not currently have access to this content.