The fundamental problem of heat and mass transfer from a slightly deformed sphere at low but finite Peclet numbers in Stokes flow is solved by a combined regular and singular perturbation method. The deformed sphere is assumed to be axisymmetric and its shape is described by a power series in a small parameter; the correction to the Nusselt number due to the deformation of the sphere is obtained through a regular perturbation with respect to this parameter. On the contrary, the correction to the Nusselt number due to the small Peclet number is derived by applying a singular perturbation method. The analytical solution is derived for the averaged Nusselt number in terms of the Peclet number and the deformation parameter.

References

1.
Fourier
,
J.
,
1822
,
Theorie Analytique de la Chaleur
, F. Didot,
Paris
.
2.
Carslaw
,
H. S.
and
Jaeger
,
J. C.
,
1947
,
Conduction of Heat in Solids
,
Oxford University Press
,
Oxford, UK
.
3.
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
,
1997
, “
Unsteady Heat And Mass Transfer From a Spheroid
,”
AIChE J.
,
43
, pp.
609
614
.10.1002/aic.690430306
4.
Acrivos
,
A.
, and
Taylor
,
T. E.
,
1962
, “
Heat and Mass Transfer From Single Spheres in Stokes Flow
,”
Phys. Fluids
,
5
, pp.
387
394
.10.1063/1.1706630
5.
Proudman
,
I.
, and
Pearson
,
J. R. A.
,
1956
, “
Expansions at Small Reynolds Numbers for the Flow Past a Sphere and a Circular Cylinder
,”
J. Fluid Mech.
,
2
, pp.
237
262
.
6.
Brunn
,
P. O.
,
1982
, “
Heat or Mass Transfer From Single Spheres in a Low Reynolds Number Flow
,”
Int. J. Eng. Sci.
,
20
, pp.
817
822
.10.1016/0020-7225(82)90003-9
7.
Feng
,
Z.-G.
, and
Michaelide
,
E. E.
,
2012
, “
Heat Transfer From a Nano-Sphere With Temperature and Velocity Discontinuities at the Interface
,”
Int. J. Heat Mass Transfer
,
55
, pp.
6491
6498
.10.1016/j.ijheatmasstransfer.2012.06.049
8.
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
,
1996
, “
Unsteady Heat Transfer From a Spherical Particle at Finite Peclet Numbers
,”
ASME J. Fluids Eng.
,
118
, pp.
96
102
.10.1115/1.2817522
9.
Brenner
,
H.
,
1963
, “
Forced Convection Heat and Mass Transfer at Small Peclet Numbers From a Particle of Arbitrary Shape
,”
Chem. Eng. Sci.
,
18
, pp.
109
122
.10.1016/0009-2509(63)80020-2
10.
Sampson
,
R. A.
,
1891
, “
On Stokes Current Function
,”
Philos. Trans. R. Soc. London, Ser. A.
,
182
, pp.
449
518
.10.1098/rsta.1891.0012
11.
Palaniappan
,
H.
,
1994
, “
Creeping Flow About a Slightly Deformed Sphere
,”
Z. Angew. Math Phys.
,
45
, pp.
833
838
.10.1007/BF00942756
12.
Payne
,
L. E.
, and
Pell
,
W. H.
,
1960
, “
The Stokes Flow Problem for a Class of Axially Symmetric Bodies
,”
J. Fluid Mech.
,
7
, pp.
529
549
.10.1017/S002211206000027X
13.
Brenner
,
H.
,
1964
, “
The Stokes Resistance of a Slightly Deformed Sphere
,”
Chem. Eng. Sci.
,
19
, pp.
519
539
.10.1016/0009-2509(64)85045-4
You do not currently have access to this content.