We compare two methods for the calculation of mode dependent ballistic phonon transmission in nanoscale waveguides. The first method is based on continuum acoustic waveguide theory and uses an eigenmode expansion to solve for phonon transmission coefficients. The second method uses lattice dynamics (LD)-computed mode shapes to excite guided phonon wavepackets in a nonequilibrium molecular dynamics (MD) simulation and calculates phonon transmission from the final distribution of system energy. The two methods are compared for the case of shear-horizontal (SH) phonons propagating in a planar waveguide with a T-stub irregularity, a geometry which has been proposed for the tuning of phonon transmission and nanostructure thermal conductance. Our comparison highlights advantages and disadvantages of the two methods and illustrates regimes when atomistic effects are prominent and continuum approaches are not appropriate.

References

1.
Liu
,
W.
, and
Asheghi
,
M.
,
2006
, “
Thermal Conductivity Measurements of Ultra-Thin Single Crystal Silicon Layers
,”
ASME J. Heat Transfer.
128
, pp.
75
83
.10.1115/1.2130403
2.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
, “
Phonon Scattering in Silicon Films With Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
, pp.
3005
3007
.10.1063/1.123994
3.
Li
,
D.
,
Wu
,
Y.
,
Kim
,
P.
,
Li
,
S.
,
Yang
,
P.
, and
Majumdar
,
A.
,
2003
, “
Thermal Conductivity of Individual Silicon Nanowires
,”
Appl. Phys. Lett.
,
83
, pp.
2934
2936
.10.1063/1.1616981
4.
Chen
,
R.
,
Hochbaum
,
A. I.
,
Murphy
,
P.
,
Moore
,
J.
,
Yang
,
P.
, and
Majumdar
,
M.
,
2008
, “
Thermal Conductance of Thin Silicon Nanowires
,”
Phys. Rev. Lett.
,
101
, p.
105501
.10.1103/PhysRevLett.101.105501
5.
Hochbaum
,
A. I.
,
Chen
,
R.
Delgado
,
R. D.
,
Liang
,
W.
,
Garnett
,
E. C.
,
Najarian
,
M.
,
Majumdar
,
A.
, and
Yang
,
P.
,
2008
, “
Enhanced Thermoelectric Performance of Rough Silicon Nanowires
,”
Nature
,
451
, pp.
163
167
.10.1038/nature06381
6.
Heron
,
J. S.
,
Bera
,
C.
,
Fournier
,
T.
,
Mingo
,
N.
, and
Bourgeois
,
O.
,
2010
, “
Blocking Phonons via Nanoscale Geometrical Design
,”
Phys. Rev. B
,
82
, p.
155458
.10.1103/PhysRevB.82.155458
7.
Chang
,
C. W.
,
Okawa
,
D.
,
Garcia
,
H.
,
Majumdar
,
A.
, and
Zettl
,
A.
,
2007
, “
Nanotube Phonon Waveguide
,”
Phys. Rev. Lett.
,
99
, p.
045901
.10.1103/PhysRevLett.99.045901
8.
Li
,
W. X.
,
Chen
,
K. Q.
,
Duan
,
W.
,
Wu
,
J.
, and
Gu
,
B. L.
,
2004
, “
Acoustic Phonon Mode Splitting Behavior of an Asymmetric Y-Branch Three Terminal Junction
,”
Applied Physics Letters
85
, pp.
822
824
.10.1063/1.1779339
9.
Huang
,
W. Q.
,
Chen
,
K. Q.
,
Shuai
,
Z.
,
Wang
,
L.
,
Hu
,
W.
, and
Zou
,
B. S.
,
2005
, “
Acoustic-Phonon Transmission and Thermal Conductance in a Double-Bend Quantum Waveguide
,”
J. Appl. Phys.
,
98
, p.
093524
.10.1063/1.2127122
10.
Tang
,
L. M.
,
Wang
,
L. L.
,
Chen
,
K. Q.
,
Huang
,
W. Q.
, and
Zou
,
B. S.
,
2006
, “
Coupling Effect on Phonon Thermal Transport in a Double-Stub Quantum Wire
,”
Appl. Phys. Lett.
,
88
, p.
163505
.10.1063/1.2196054
11.
Chen
,
K. Q.
,
Li
,
W. X.
,
Duan
,
W.
,
Shuai
,
Z.
, and
Gu
,
B. L.
,
2005
, “
Effect of Defects on the Thermal Conductivity in a Nanowire
,”
Phys. Rev. B
,
72
, p.
045422
.10.1103/PhysRevB.72.045422
12.
Sun
,
Q.
,
Yang
,
P.
, and
Guo
,
H.
,
2002
, “
Four-Terminal Thermal Conductance of Mesoscopic Dielectric Systems
,”
Phys. Rev. Lett.
,
89
, p.
175901
.10.1103/PhysRevLett.89.175901
13.
Huang
,
W. Q.
,
Huang
,
B. Y.
,
Yi
,
D. Q.
,
Wang
,
M. P.
Huang
,
G. F.
, and
Wang
,
L. L.
,
2008
, “
Selective Transmission and Enhanced Thermal Conductance of Ballistic Phonon by Nanocavities Embedded in a Narrow Constriction
,”
J. Phys. D: Appl. Phys.
,
42
, p.
015101
.10.1088/0022-3727/42/1/015101
14.
Huang
,
W. Q.
,
Yi
,
D. Q.
,
Huang
,
B. Y.
,
Wang
,
M. P.
,
Huang
,
G. F.
, and
Wang
,
L. L.
,
2008
, “
Selective Transport of Ballistic Phonon Modes by an Acoustic Nanocavity in a Psi-Shaped Semiconductor Nanowire
,”
J. Appl. Phys.
,
104
, p.
054309
.10.1063/1.2975344
15.
Yang
,
P.
,
Sun
,
Q.
,
Guo
,
H.
, and
Hu
,
B.
,
2007
, “
Thermal Transport in a Dielectric T-Shaped Quantum Wire
,”
Phys. Rev. B
,
75
, p.
235319
.10.1103/PhysRevB.75.235319
16.
Liu
,
Z.
,
Yu
,
X.
, and
Chen
,
K.
,
2009
, “
Thermal Transport Associated With Ballistic Phonons in Asymmetric Quantum Structures
,”
Fron. Phys. China
,
4
, pp.
420
425
.10.1007/s11467-009-0056-0
17.
Roberts
,
N. A.
, and
Walker
,
D. G.
,
2011
, “
Phonon Transport in Asymmetric Sawtooth Nanowires
,”
Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference
, Paper No. AJTEC2011-44.
18.
Balandin
,
A.
, and
Wang
,
K. L.
,
1998
, “
Significant Decrease of the Lattice Thermal Conductivity Due to Phonon Confinement in a Free-Standing Semiconductor Quantum Well
,”
Phys. Rev. B
,
58
, pp.
1544
1549
.10.1103/PhysRevB.58.1544
19.
Sadhu
J.
, and
Sinha
S.
,
2011
, “
Room-Temperature Phonon Boundary Scattering Below the Casimir Limit
,”
Phys. Rev. B
,
84
(
11
), p.
115450
.10.1103/PhysRevB.84.115450
20.
Tamura
,
H.
, and
Ando
,
T.
,
1991
, “
Conductance Fluctuations in Quantum Wires
,”
Phys. Rev. B
,
44
, pp.
1792
1800
.10.1103/PhysRevB.44.1792
21.
Landauer
,
R.
,
1957
, “
Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction
,”
IBM J. Res. Dev.
,
1
, pp.
223
231
.10.1147/rd.13.0223
22.
Rego
,
L. G. C.
, and
Kirczenow
,
G.
,
1998
, “
Quantized Thermal Conductance of Dielectric Quantum Wires
,”
Phys. Rev. Lett.
,
81
, pp.
232
235
.10.1103/PhysRevLett.81.232
23.
Galán
,
J. M.
, and
Abascal
,
R.
,
2003
, “
Elastodynamic Guided Wave Scattering in Infinite Plates
,”
Int. J. Numer. Methods Eng.
,
58
, pp.
1091
1118
.10.1002/nme.809
24.
Cho
,
Y.
,
2000
, “
Estimation of Ultrasonic Guided Wave Mode Conversion in a Plate With Thickness Variation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
47
, pp.
591
603
.10.1109/58.842046
25.
Koshiba
,
M.
,
Hasegawa
,
K.
, and
Suzuki
,
M.
,
1987
, “
Finite-Element Solution of Horizontally Polarized Shear Wave Scattering in an Elastic Plate
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
34
, pp.
461
466
.10.1109/T-UFFC.1987.26967
26.
Al-Nassar
,
Y. N.
,
Datta
,
S. K.
, and
Shah
,
A. H.
,
1991
, “
Scattering of Lamb Waves by a Normal Rectangular Strip Weldment
,”
Ultrasonics
,
29
, pp.
125
132
.10.1016/0041-624X(91)90041-6
27.
Song
,
W. J.
,
Rose
,
J. L.
,
Galán
,
J. M.
, and
Abascal
,
R.
,
2005
, “
Ultrasonic Guided Wave Scattering in a Plate Overlap
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
, pp.
892
903
.10.1109/TUFFC.2005.1503975
28.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
,
2002
, “
Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular-Dynamics Simulation
,”
Appl. Phys. Lett.
,
80
, pp.
2484
2486
.10.1063/1.1465106
29.
Becker
,
B.
,
Schelling
,
P. K.
, and
Phillpot
,
S. R.
,
2006
, “
Interfacial Phonon Scattering in Semiconductor Nanowires by Molecular-Dynamics Simulation
,”
J. Appl. Phys.
,
99
, p.
123715
.10.1063/1.2207503
30.
Kondo
,
N.
,
Yamamoto
,
T.
, and
Watanabe
,
K.
,
2006
, “
Phonon Wavepacket Scattering Dynamics in Defective Carbon Nanotubes
,”
Jpn. J. Appl. Phys.
,
45
, pp.
L963
L965
.10.1143/JJAP.45.L963
31.
Zuckerman
,
N.
, and
Lukes
,
J. R.
,
2008
, “
Acoustic Phonon Scattering From Particles Embedded in an Anisotropic Medium: A Molecular Dynamics Study
,”
Phys. Rev. B
,
77
, p.
094302
.10.1103/PhysRevB.77.094302
32.
Tian
,
Z. T.
,
White
,
B. E.
, and
Sun
,
Y.
,
2010
, “
Phonon Wave-Packet Interference and Phonon Tunneling Based Energy Transport Across Nanostructured Thin Films
,”
Appl. Phys. Lett.
,
96
, p.
263113
.10.1063/1.3458831
33.
Zhao
,
H.
, and
Freund
,
J. B.
,
2005
, “
Lattice-Dynamical Calculation of Phonon Scattering at Ideal Si–Ge Interfaces
,”
J. Appl. Phys.
,
97
, p.
024903
.10.1063/1.1835565
34.
Young
,
D. A.
, and
Maris
,
H. J.
,
1989
, “
Lattice-Dynamical Calculation of the Kapitza Resistance Between FCC Lattices
,”
Phys. Rev. B
,
40
, pp.
3685
3693
.10.1103/PhysRevB.40.3685
35.
Landry
,
E. S.
,
2009
, “
Thermal Transport by Phonons Across Semiconductor Interfaces, Thin Films, and Superlattices
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
36.
Wang
,
J. S.
,
Wang
,
J.
, and
,
J. T.
,
2008
, “
Quantum Thermal Transport in Nanostructures
,”
Eur. Phys. J. B
,
62
, pp.
381
404
.10.1140/epjb/e2008-00195-8
37.
Wang
,
J.
, and
Wang
,
J. S.
,
2006
, “
Mode-Dependent Energy Transmission Across Nanotube Junctions Calculated With a Lattice Dynamics Approach
,”
Phys. Rev. B
,
74
, p.
054303
.10.1103/PhysRevB.74.054303
38.
Zhang
,
W.
,
Mingo
,
N.
, and
Fisher
,
T.
,
2007
, “
Simulation of Phonon Transport Across a Non-Polar Nanowire Junction Using an Atomistic Green's Function Method
,”
Phys. Rev. B
,
76
, p.
195429
.10.1103/PhysRevB.76.195429
39.
Huang
,
Z.
,
Fisher
,
T. S.
, and
Murthy
,
J. Y.
,
2010
, “
Simulation of Thermal Conductance Across Dimensionally Mismatched Graphene Interfaces
,”
J. Appl. Phys.
,
108
, p.
114310
.10.1063/1.3514119
40.
Huang
,
Z.
,
Fisher
,
T. S.
, and
Murthy
,
J. Y.
,
2010
, “
Simulation of Phonon Transmission Through Graphene and Graphene Nanoribbons With a Green's Function Method
,”
J. Appl. Phys.
,
108
, p.
094319
.10.1063/1.3499347
41.
Zhang
,
W.
,
Fisher
,
T. S.
, and
Mingo
,
N.
,
2007
, “
Simulation of Interfacial Phonon Transport in Si–Ge Heterostructures Using an Atomistic Green's Function Method
,”
ASME J. Heat Transfer
,
129
, pp.
483
491
.10.1115/1.2709656
42.
Li
,
W. X.
,
Chen
,
K. Q.
,
Duan
,
W.
,
Wu
,
J.
, and
Gu
,
B. L.
,
2004
, “
Acoustic Phonon Transport Through a T-Shaped Quantum Waveguide
,”
J. Phys.: Condens. Matter
,
16
, p.
5049
.10.1088/0953-8984/16/28/023
43.
Yang
,
P.
,
Sun
,
Q.
,
Guo
,
H.
, and
Hu
,
B.
,
2007
, “
Thermal Transport in a Dielectric T-Shaped Quantum Wire
,”
Phys. Rev. B
,
75
, p.
235319
.10.1103/PhysRevB.75.235319
44.
Solie
,
L. P.
, and
Auld
,
B. A.
,
1973
, “
Elastic Waves in Free Anisotropic Plates
,”
J. Acoust. Soc. Am.
,
54
, pp.
50
65
.10.1121/1.1913575
45.
Mingo
,
N.
,
2003
, “
Calculation of Si Nanowire Thermal Conductivity Using Complete Phonon Dispersion Relations
,”
Phys. Rev. B
,
68
, p.
113308
.10.1103/PhysRevB.68.113308
46.
Dove
,
M. T.
,
1993
,
Introduction to Lattice Dynamics
,
Cambridge University Press
,
Cambridge
, UK.
47.
Stillinger
,
F. H.
, and
Weber
,
T. A.
,
1985
, “
Computer Simulation of Local Order in Condensed Phases of Silicon
,”
Phys. Rev. B
,
31
, pp.
5262
5271
.10.1103/PhysRevB.31.5262
48.
Allen
,
M. P.
, and
Tildesley
,
D. J.
,
1987
,
Computer Simulation of Liquids
,
Clarendon Press
,
Oxford
, UK.
You do not currently have access to this content.