We investigated heat and mass transfer on water based nanofluid due to the combined effects of homogeneous–heterogeneous reactions, an external magnetic field and internal heat generation. The flow is generated by the movement of a linearly stretched surface, and the nanofluid contains nanoparticles of copper and gold. Exact solutions of the transformed model equations were obtained in terms of hypergeometric functions. To gain more insights regarding subtle impact of fluid and material parameters on the heat and mass transfer characteristics, and the fluid properties, the equations were further solved numerically using the matlab bvp4c solver. The similarities and differences in the behavior, including the heat and mass transfer characteristics, of the copper–water and gold–water nanofluids with respect to changes in the flow parameters were investigated. Finally, we obtained the numerical values of the skin friction and heat transfer coefficients.

References

1.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plate
,”
Z. Angew. Math. Phys.
,
21
(
4
), pp.
645
647
.10.1007/BF01587695
2.
Pavlov
,
K. B.
,
1974
, “
Magnetohydrodynamic Flow of an Incompressible Viscous Fluid Caused by Deformation of a Surface
,”
Magn. Gidrodin.
,
10
(
4
), pp.
146
147
.
3.
Andersson
,
H. I.
,
1995
, “
An Exact Solution of the Navier Stokes' Equations for Magnetohydrodynamic Flow
,”
Acta Mech.,
113
(
1–4
), pp.
241
244
.10.1007/BF01212646
4.
Fang
,
T.
, and
Zhang
,
J.
,
2009
, “
Closed-Form Exact Solutions of MHD Viscous Flow Over a Shrinking Sheet
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
7
), pp.
2853
2857
.10.1016/j.cnsns.2008.10.005
5.
Fang
,
T.
,
Zhang
,
J.
, and
Yao
,
S.
,
2009
, “
Slip MHD Viscous Flow Over a Stretching Sheet—An Exact Solution
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
11
), pp.
3731
3737
.10.1016/j.cnsns.2009.02.012
6.
Fang
,
T.
,
Zhang
,
J.
, and
Yao
,
S.
,
2010
, “
Slip Magnetohydrodynamic Viscous Flow Over a Permeable Shrinking Sheet
,”
Chin. Phys. Lett.
,
27
(
12
), p.
124702
.10.1088/0256-307X/27/12/124702
7.
Abel
,
M. S.
,
Sanjayanand
,
E.
, and
Nandeppanavar
,
M. M.
,
2008
, “
Viscoelastic MHD Flow and Heat Transfer Over a Stretching Sheet With Viscous and Ohmic Dissipations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
9
), pp.
1808
1821
.10.1016/j.cnsns.2007.04.007
8.
Jafar
,
K.
,
Nazar
,
R.
,
Ishak
,
A.
, and
Pop
,
I.
,
2012
, “
MHD Flow and Heat Transfer Over Stretching/Shrinking Sheets With External Magnetic Field, Viscous Dissipation and Joule Effects
,”
Can. J. Chem. Eng.
,
90
(
5
), pp.
1336
1346
.10.1002/cjce.20609
9.
Devi
,
S. P. A.
, and
Thiyagarajan
,
M.
,
2006
, “
Steady Nonlinear Hydromagnetic Flow and Heat Transfer Over a Stretching Surface of Variable Temperature
,”
Heat Mass Transfer
,
42
(
8
), pp.
671
677
.10.1007/s00231-005-0640-y
10.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquids by Dispersing Ultra-Fine Particles
,”
Netsu Bussei
,
7
(
4
), pp.
227
233
.10.2963/jjtp.7.227
11.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
.10.1016/S0142-727X(99)00067-3
12.
Yoo
,
D. H.
,
Hong
,
K. S.
, and
Yang
,
H. S.
,
2007
, “
Study of Thermal Conductivity of Nanofluids for the Application of Heat Transfer Fluids
,”
Thermochim. Acta
,
455
(
1–2
), pp.
66
69
.10.1016/j.tca.2006.12.006
13.
Hu
,
P.
,
Shan
,
W. L.
,
Yu
,
F.
, and
Chen
,
Z. S.
,
2008
, “
Thermal Conductivity of AIN–Ethanol Nanofluid
,”
Int. J. Thermophys.
,
29
(
6
), pp.
1968
1973
.10.1007/s10765-008-0529-3
14.
Minkowycz
,
W. J.
,
Sparrow
,
E. M.
, and
Abraham
,
J. P.
,
2012
,
Nanoparticle Heat Transfer and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.10.1201/b12983
15.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
San Francisco, CA
, Nov. 12–17, pp.
99
105
.
16.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
,
2001
, “
Anomalously Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
(
14
), pp.
2252
2254
.10.1063/1.1408272
17.
Kang
,
H. U.
,
Kim
,
S. H.
, and
Oh
,
J. M.
,
2006
, “
Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume
,”
Exp. Heat Transfer
,
19
(
3
), pp.
181
191
.10.1080/08916150600619281
18.
Velagapudi
,
V.
,
Konijeti
,
R. K.
, and
Aduru
,
C. S. K.
,
2008
, “
Empirical Correlation to Predict Thermophysical and Heat Transfer Characteristics of Nanofluids
,”
Therm. Sci.
,
12
(
2
), pp.
27
37
.10.2298/TSCI0802027V
19.
Rudyak
,
V. Y.
,
Belkin
,
A. A.
, and
Tomilina
,
E. A.
,
2010
, “
On the Thermal Conductivity of Nanofluids
,”
Tech. Phys. Lett.
,
36
(
7
), pp.
660
662
.10.1134/S1063785010070229
20.
Makinde
,
O. D.
, and
Aziz
,
A.
,
2011
, “
Boundary Layer Flow of a Nanofluid Past a Stretching Sheet With a Convective Boundary Condition
,”
Int. J. Therm. Sci.
,
50
(
7
), pp.
1326
1332
.10.1016/j.ijthermalsci.2011.02.019
21.
Narayana
,
M.
, and
Sibanda
,
P.
,
2012
, “
Laminar Flow of a Nanoliquid Film Over an Unsteady Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7552
7560
.10.1016/j.ijheatmasstransfer.2012.07.054
22.
Kameswaran
,
P. K.
,
Narayana
,
M.
,
Sibanda
,
P.
, and
Murthy
,
P. V. S. N.
,
2012
, “
Hydromagnetic Nanofluid Flow Due to a Stretching or Shrinking Sheet With Viscous Dissipation and Chemical Reaction Effects
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7587
7595
.10.1016/j.ijheatmasstransfer.2012.07.065
23.
Hamad
,
M. A. A.
, and
Pop
,
I.
,
2011
, “
Unsteady MHD Free Convection Flow Past a Vertical Permeable Flat Plate in a Rotating Frame of Reference With Constant Heat Source in a Nanofluid
,”
Heat Mass Transfer
,
47
(
12
), pp.
1517
1524
.10.1007/s00231-011-0816-6
24.
Hamad
,
M. A. A.
, and
Pop
,
I.
,
2011
, “
Scaling Transformations for Boundary Layer Flow Near the Stagnation-Point on a Heated Permeable Stretching Surface in a Porous Medium Saturated With a Nanofluid and Heat Generation/Absorption Effects
,”
Transp. Porous Med.
,
87
(
1
), pp.
25
39
.10.1007/s11242-010-9683-8
25.
Chamkha
,
A. J.
, and
Aly
,
A. M.
,
2011
, “
MHD Free Convection Flow of a Nanofluid Past a Vertical Plate in the Presence of Heat Generation or Absorption Effects
,”
Chem. Eng. Comm.
,
198
(
3
), pp.
425
441
.10.1080/00986445.2010.520232
26.
Alsaedi
,
A.
,
Awais
,
M.
, and
Hayat
,
T.
,
2012
, “
Effects of Heat Generation/Absorption on Stagnation Point Flow of Nanofluid Over a Surface With Convective Boundary Conditions
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
11
), pp.
4210
4223
.10.1016/j.cnsns.2012.03.008
27.
Merkin
,
J. H.
,
1996
, “
A Model for Isothermal Homogeneous–Heterogeneous Reactions in Boundary Layer Flow
,”
Math. Comput. Model.
,
24
(
8
), pp.
125
136
.10.1016/0895-7177(96)00145-8
28.
Chaudhary
,
M. A.
, and
Merkin
,
J. H.
,
1995
, “
A Simple Isothermal Model for Homogeneous–Heterogeneous Reactions in Boundary Layer Flow: I. Equal Diffusivities
,”
Fluid Dyn. Res.
,
16
(
6
), pp.
311
333
.10.1016/0169-5983(95)00015-6
29.
Ziabakhsh
,
Z.
,
Domairry
,
G.
,
Bararnia
,
H.
, and
Babazadeh
,
H.
,
2010
, “
Analytical Solution of Flow and Diffusion of Chemically Reactive Species Over a Nonlinearly Stretching Sheet Immersed in a Porous Medium
,”
J. Taiwan Inst. Chem. Eng.
,
41
(
1
), pp.
22
28
.10.1016/j.jtice.2009.04.011
30.
Chambre
,
P. L.
, and
Acrivos
,
A.
,
1956
, “
On Chemical Surface Reactions in Laminar Boundary Layer Flows
,”
J. Appl. Phys.
,
27
(
11
), pp.
1322
1328
.10.1063/1.1722258
31.
Khan
,
W. A.
, and
Pop
,
I.
,
2010
, “
Flow Near the Two-Dimensional Stagnation Point on an Infinite Permeable Wall With a Homogeneous–Heterogeneous Reaction
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
11
), pp.
3435
3443
.10.1016/j.cnsns.2009.12.022
32.
Khan
,
W. A.
, and
Pop
,
I.
,
2012
, “
Effect of Homogeneous–Heterogeneous Reactions on the Viscoelastic Fluid Toward a Stretching Sheet
,”
ASME J. Heat Transfer
,
134
(
6
), p.
064506
.10.1115/1.4006016
33.
Kameswaran
,
P. K.
,
Shaw
,
S.
,
Sibanda
,
P.
, and
Murthy
,
P. V. S. N.
,
2013
, “
Homogeneous–Heterogeneous Reactions in a Nanofluid Flow Due to a Porous Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
465
472
.10.1016/j.ijheatmasstransfer.2012.10.047
34.
Cramer
,
K.
, and
Pai
,
S.
,
1973
,
Magnetofluiddynamics for Engineers and Applied Physicists
,
McGraw-Hill
,
New York
.
35.
Meyer
,
R. C.
,
1958
, “
On Reducing Aerodynamic Heat-Transfer Rates by Magnetohydrodynamic Techniques
,”
J. Aerosp. Sci.
,
25
(
9
), pp.
561
572
.10.2514/8.7781
36.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solution
,”
J. Chem. Phys.
,
20
(
4
), pp.
571
581
.10.1063/1.1700493
37.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1972
,
Handbook of Mathematical Functions
,
National Bureau of Standards
,
Washington, DC
.
38.
Grubka
,
L. G.
, and
Bobba
,
K. M.
,
1985
, “
Heat Transfer Characteristics of a Continuous Stretching Surface With Variable Temperature
,”
ASME J. Heat Transfer
,
107
(
1
), pp.
248
250
.10.1115/1.3247387
39.
Hamad
,
M. A. A.
,
2011
, “
Analytical Solution of Natural Convection Flow of a Nanofluid Over a Linearly Stretching Sheet in the Presence of Magnetic Field
,”
Int. Commun. Heat Mass Transfer
,
38
(
4
), pp.
487
492
.10.1016/j.icheatmasstransfer.2010.12.042
You do not currently have access to this content.