This work numerically examined effects of nanofluids flow on heat transfer in a C-shaped geometry with the aim to evaluate potential advantages of using nanofluids in a chaotic flow. Numerical computations revealed that the combination of nanofluids and chaotic advection can be an effective way to improve thermal performance of laminar flows. The results indicated that addition of only 1–3% CuO or Al2O3 nanoparticles (volumetric concentration) to the chaotic flow improved heat transfer by 4–14% and 4–18%, respectively, with a marginal increase in the pressure drop.
Issue Section:
Forced Convection
References
1.
Liu
, R. H.
, Stremler
, M. A.
, Sharp
, K. V.
, Olsen
, M. G.
, Santiago
, J. G.
, Adrian
, R. J.
, Aref
, H.
, and Beebe
, D. J.
, 2000
, “Passive Mixing in a Three-Dimensional Serpentine Microchannel
,” J. Microelectromech. Syst.
, 9
(2
), pp. 190
–197
.10.1109/84.8466992.
Beebe
, D. J.
, Adrian
, R. J.
, Olsen
, M. G.
, Stremler
, M. A.
, Aref
, H.
, and Jo
, B.-H.
, 2001
, “Passive Mixing in Microchannels: Fabrication and Flow Experiments
,” Méc. Ind.
, 2
(4
), pp. 343
–348
.10.1016/S1296-2139(01)01114-93.
Lasbet
, Y.
, Auvity
, B.
, Castelain
, C.
, and Peerhossaini
, H.
, 2006
, “A Chaotic Heat-Exchanger for PEMFC Cooling Applications
,” J. Power Sources
, 156
(1
), pp. 114
–118
.10.1016/j.jpowsour.2005.08.0304.
Castelain
, C.
, Mokrani
, A.
, Le Guer
, Y.
, and Peerhossaini
, H.
, 2001
, “Experimental Study of Chaotic Advection Regime in a Twisted Duct Flow
,” Eur. J. Mech.-B/Fluids
, 20
(2
), pp. 205
–232
.10.1016/S0997-7546(00)01116-X5.
Choi
, S. U.
, and Eastman
, J.
, 1995
, “Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, pp. 12–17.6.
Lee
, S.
, Choi
, S. U.
, Li
, S.
, and, Eastman
, J.
, 1999
, “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,” ASME J. Heat Transfer
, 121
(2
), pp. 280
–289
.10.1115/1.28259787.
Yu
, W.
, France
, D. M.
, Routbort
, J. L.
, and Choi
, S. U.
, 2008
, “Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements
,” Heat Transfer Eng.
, 29
(5
), pp. 432
–460
.10.1080/014576307018508518.
Das
, S. K.
, Choi
, S. U.
, and Patel
, H. E.
, 2006
, “Heat Transfer in Nanofluids—A Review
,” Heat Transfer Eng.
, 27
(10
), pp. 3
–19
.10.1080/014576306009045939.
Mohammed
, H. A.
, Gunnasegaran
, P.
, and Shuaib
, N. H.
, 2010
, “Heat Transfer in Rectangular Microchannels Heat Sink Using Nanofluids
,” Int. Commun. Heat Mass Transfer
, 37
(10
), pp. 1496
–1503
.10.1016/j.icheatmasstransfer.2010.08.02010.
Naphon
, P.
, and Nakharintr
, L.
, 2013
, “Heat Transfer of Nanofluids in the Mini-Rectangular Fin Heat Sinks
,” Int. Commun. Heat Mass Transfer
, 40
, pp. 25
–31
.10.1016/j.icheatmasstransfer.2012.10.01211.
Yang
, Y.-T.
, Wang
, Y.-H.
, and Tseng
, P.-K.
, 2014
, “Numerical Optimization of Heat Transfer Enhancement in a Wavy Channel Using Nanofluids
,” Int. Commun. Heat Mass Transfer
, 51
, pp. 9
–17
.10.1016/j.icheatmasstransfer.2013.12.00212.
Khairul
, M. A.
, Alim
, M. A.
, Mahbubul
, I. M.
, Saidur
, R.
, Hepbasli
, A.
, and Hossain
, A.
, 2014
, “Heat Transfer Performance and Exergy Analyses of a Corrugated Plate Heat Exchanger Using Metal Oxide Nanofluids
,” Int. Commun. Heat Mass Transfer
, 50
, pp. 8
–14
.10.1016/j.icheatmasstransfer.2013.11.00613.
Anoop
, K.
, Cox
, J.
, and Sadr
, R.
, 2013
, “Thermal Evaluation of Nanofluids in Heat Exchangers
,” Int. Commun. Heat Mass Transfer
, 49
, pp. 5
–9
.10.1016/j.icheatmasstransfer.2013.10.00214.
Sonawane
, S. S.
, Khedkar
, R. S.
, and Wasewar
, K. L.
, 2013
, “Study on Concentric Tube Heat Exchanger Heat Transfer Performance Using Al2O3—Water Based Nanofluids
,” Int. Commun. Heat Mass Transfer
, 49
, pp. 60
–68
.10.1016/j.icheatmasstransfer.2013.10.00115.
Huminic
, G.
, and Huminic
, A.
, 2013
, “Numerical Analysis of Laminar Flow Heat Transfer of Nanofluids in a Flattened Tube
,” Int. Commun. Heat Mass Transfer
, 44
, pp. 52
–57
.10.1016/j.icheatmasstransfer.2013.03.00316.
Sasmito
, A. P.
, Kurnia
, J. C.
, and Mujumdar
, A. S.
, 2011
, “Numerical Evaluation of Laminar Heat Transfer Enhancement in Nanofluid Flow in Coiled Square Tubes
,” Nanoscale Res. Lett.
, 6
(1
), pp. 1
–14
.10.1186/1556-276X-6-37617.
Vajjha
, R. S.
, Das
, D. K.
, and Namburu
, P. K.
, 2010
, “Numerical Study of Fluid Dynamic and Heat Transfer Performance of Al2O3 and CuO Nanofluids in the Flat Tubes of a Radiator
,” Int. J. Heat Fluid Flow
, 31
(4
), pp. 613
–621
.10.1016/j.ijheatfluidflow.2010.02.01618.
Das
, S. K.
, Choi
, S. U.
, Yu
, W.
, and Pradeep
, T.
, 2008
, Nanofluids: Science and Technology
, Wiley-Interscience
, Hoboken, NJ
.19.
Kays
, W. M.
, Crawford
, M. E.
, and Weigand
, B.
, 1993
, Convective Heat and Mass Transfer
, McGraw-Hill
, New York
.20.
Anoop
, K.
, Sundararajan
, T.
, and Das
, S. K.
, 2009
, “Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region
,” Int. J. Heat Mass Transfer
, 52
(9
), pp. 2189
–2195
.10.1016/j.ijheatmasstransfer.2007.11.063Copyright © 2014 by ASME
You do not currently have access to this content.