This work numerically examined effects of nanofluids flow on heat transfer in a C-shaped geometry with the aim to evaluate potential advantages of using nanofluids in a chaotic flow. Numerical computations revealed that the combination of nanofluids and chaotic advection can be an effective way to improve thermal performance of laminar flows. The results indicated that addition of only 1–3% CuO or Al2O3 nanoparticles (volumetric concentration) to the chaotic flow improved heat transfer by 4–14% and 4–18%, respectively, with a marginal increase in the pressure drop.

References

1.
Liu
,
R. H.
,
Stremler
,
M. A.
,
Sharp
,
K. V.
,
Olsen
,
M. G.
,
Santiago
,
J. G.
,
Adrian
,
R. J.
,
Aref
,
H.
, and
Beebe
,
D. J.
,
2000
, “
Passive Mixing in a Three-Dimensional Serpentine Microchannel
,”
J. Microelectromech. Syst.
,
9
(
2
), pp.
190
197
.10.1109/84.846699
2.
Beebe
,
D. J.
,
Adrian
,
R. J.
,
Olsen
,
M. G.
,
Stremler
,
M. A.
,
Aref
,
H.
, and
Jo
,
B.-H.
,
2001
, “
Passive Mixing in Microchannels: Fabrication and Flow Experiments
,”
Méc. Ind.
,
2
(
4
), pp.
343
348
.10.1016/S1296-2139(01)01114-9
3.
Lasbet
,
Y.
,
Auvity
,
B.
,
Castelain
,
C.
, and
Peerhossaini
,
H.
,
2006
, “
A Chaotic Heat-Exchanger for PEMFC Cooling Applications
,”
J. Power Sources
,
156
(
1
), pp.
114
118
.10.1016/j.jpowsour.2005.08.030
4.
Castelain
,
C.
,
Mokrani
,
A.
,
Le Guer
,
Y.
, and
Peerhossaini
,
H.
,
2001
, “
Experimental Study of Chaotic Advection Regime in a Twisted Duct Flow
,”
Eur. J. Mech.-B/Fluids
,
20
(
2
), pp.
205
232
.10.1016/S0997-7546(00)01116-X
5.
Choi
,
S. U.
, and
Eastman
,
J.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, pp. 12–17.
6.
Lee
,
S.
,
Choi
,
S. U.
,
Li
,
S.
, and,
Eastman
,
J.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
.10.1115/1.2825978
7.
Yu
,
W.
,
France
,
D. M.
,
Routbort
,
J. L.
, and
Choi
,
S. U.
,
2008
, “
Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements
,”
Heat Transfer Eng.
,
29
(
5
), pp.
432
460
.10.1080/01457630701850851
8.
Das
,
S. K.
,
Choi
,
S. U.
, and
Patel
,
H. E.
,
2006
, “
Heat Transfer in Nanofluids—A Review
,”
Heat Transfer Eng.
,
27
(
10
), pp.
3
19
.10.1080/01457630600904593
9.
Mohammed
,
H. A.
,
Gunnasegaran
,
P.
, and
Shuaib
,
N. H.
,
2010
, “
Heat Transfer in Rectangular Microchannels Heat Sink Using Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
37
(
10
), pp.
1496
1503
.10.1016/j.icheatmasstransfer.2010.08.020
10.
Naphon
,
P.
, and
Nakharintr
,
L.
,
2013
, “
Heat Transfer of Nanofluids in the Mini-Rectangular Fin Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
40
, pp.
25
31
.10.1016/j.icheatmasstransfer.2012.10.012
11.
Yang
,
Y.-T.
,
Wang
,
Y.-H.
, and
Tseng
,
P.-K.
,
2014
, “
Numerical Optimization of Heat Transfer Enhancement in a Wavy Channel Using Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
51
, pp.
9
17
.10.1016/j.icheatmasstransfer.2013.12.002
12.
Khairul
,
M. A.
,
Alim
,
M. A.
,
Mahbubul
,
I. M.
,
Saidur
,
R.
,
Hepbasli
,
A.
, and
Hossain
,
A.
,
2014
, “
Heat Transfer Performance and Exergy Analyses of a Corrugated Plate Heat Exchanger Using Metal Oxide Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
50
, pp.
8
14
.10.1016/j.icheatmasstransfer.2013.11.006
13.
Anoop
,
K.
,
Cox
,
J.
, and
Sadr
,
R.
,
2013
, “
Thermal Evaluation of Nanofluids in Heat Exchangers
,”
Int. Commun. Heat Mass Transfer
,
49
, pp.
5
9
.10.1016/j.icheatmasstransfer.2013.10.002
14.
Sonawane
,
S. S.
,
Khedkar
,
R. S.
, and
Wasewar
,
K. L.
,
2013
, “
Study on Concentric Tube Heat Exchanger Heat Transfer Performance Using Al2O3—Water Based Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
49
, pp.
60
68
.10.1016/j.icheatmasstransfer.2013.10.001
15.
Huminic
,
G.
, and
Huminic
,
A.
,
2013
, “
Numerical Analysis of Laminar Flow Heat Transfer of Nanofluids in a Flattened Tube
,”
Int. Commun. Heat Mass Transfer
,
44
, pp.
52
57
.10.1016/j.icheatmasstransfer.2013.03.003
16.
Sasmito
,
A. P.
,
Kurnia
,
J. C.
, and
Mujumdar
,
A. S.
,
2011
, “
Numerical Evaluation of Laminar Heat Transfer Enhancement in Nanofluid Flow in Coiled Square Tubes
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
14
.10.1186/1556-276X-6-376
17.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Namburu
,
P. K.
,
2010
, “
Numerical Study of Fluid Dynamic and Heat Transfer Performance of Al2O3 and CuO Nanofluids in the Flat Tubes of a Radiator
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
613
621
.10.1016/j.ijheatfluidflow.2010.02.016
18.
Das
,
S. K.
,
Choi
,
S. U.
,
Yu
,
W.
, and
Pradeep
,
T.
,
2008
,
Nanofluids: Science and Technology
,
Wiley-Interscience
,
Hoboken, NJ
.
19.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
1993
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
20.
Anoop
,
K.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2009
, “
Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region
,”
Int. J. Heat Mass Transfer
,
52
(
9
), pp.
2189
2195
.10.1016/j.ijheatmasstransfer.2007.11.063
You do not currently have access to this content.