The preferable cooling solution for micro-electronic systems could be forced flow boiling in micro heat exchangers. Nanoparticle deposition affects nucleate boiling via alteration of surface roughness, capillary wicking, wettability, and nucleation site density. In this study, flow boiling was investigated using water and nanofluids in a single rectangular microchannel at different heat fluxes. The observed change in flow regime transition revealed the effect of nanoparticles on the onset of nucleate boiling (ONB) and the onset of bubble elongation (OBE). The addition of nanoparticles was found to stabilize bubble nucleation and growth and increase heat transfer in the thin film regions.
Issue Section:
Evaporation, Boiling, and Condensation
Topics:
Boiling,
Bubbles,
Flow (Dynamics),
Heat,
Microchannels,
Nanofluids,
Nanoparticles,
Water,
Cycles,
Flux (Metallurgy),
Temperature
References
1.
Krishnan
, S.
, Garimella
, S. V.
, and Mahajan
, R. V.
, 2007
, “Towards a Thermal Moore's Law
,” IEEE Trans. Adv. Packag.
, 30
(3
), pp. 462
–474
.10.1109/TADVP.2007.8985172.
Kandlikar
, S. G.
, Garimella
, S.
, Li
, D.
, Colin
, S.
, and King
, M. R.
, 2006
, Heat Transfer and Fluid Flow in Minichannels and Microchannels
, Elsevier
, Kidlington, Oxford, UK
.3.
Kandlikar
, S. G.
, 2006
, “Nucleation Characteristics and Stability Considerations During Flow Boiling in Microchannels
,” Exp. Therm. Fluid Sci.
, 30
(5
), pp. 441
–447
.10.1016/j.expthermflusci.2005.10.0014.
Mukherjee
, A.
, and Kandlikar
, S. G.
, 2005
, “Numerical Simulation of Growth of a Vapor Bubble During Flow Boiling of Water in a Microchannel
,” J. Microfluid. Nanofluid.
, 1
(2
), pp. 137
–145
.10.1007/s10404-004-0021-85.
Huo
, X.
, Chen
, L.
, Tian
, Y. S.
, and Karayiannis
, T. G.
, 2004
, “Flow Boiling and Flow Regimes in Small Diameter Tubes
,” Appl. Therm. Eng.
, 24
(8–9
), pp. 1225
–1239
.10.1016/j.applthermaleng.2003.11.0276.
Wu
, H. Y.
, and Cheng
, P.
, 2004
, “Boiling Instability in Parallel Silicon Microchannels at Different Heat Flux
,” Int. J. Heat Mass Transfer
, 47
(17–18
), pp. 3631
–3641
.10.1016/j.ijheatmasstransfer.2004.04.0127.
Edel
, Z. J.
, and Mukherjee
, A.
, 2012
, “Experimental Investigation of Vapor Bubble Growth During Flow Boiling in a Microchannel
,” Int. J. Multiphase Flow
, 37
(10
), pp. 1257
–1265
.10.1016/j.ijmultiphaseflow.2011.07.0078.
Peng
, X. F.
, Hu
, H. Y.
, and Wang
, B. X.
, 1998
, “Boiling Nucleation During Liquid Flow in Microchannels
,” Int. J. Heat Mass Transfer
, 41
(1
), pp. 101
–106
.10.1016/S0017-9310(97)00096-39.
Li
, J.
, and Cheng
, P.
, 2004
, “Bubble Cavitation in a Microchannel
,” Int. J. Heat Mass Transfer
, 47
(12–13
), pp. 2689
–2698
.10.1016/j.ijheatmasstransfer.2003.11.02010.
Daungthongsuk
, W.
, and Wongwises
, S.
, 2007
, “A Critical Review of Convective Heat Transfer of Nanofluids
,” Renewable Sustainable Energy Rev.
, 11
(5
), pp. 797
–817
.10.1016/j.rser.2005.06.00511.
Godson
, L.
, Raja
, B.
, Lal
, D. M.
, and Wongwises
, S.
, 2010
, “Enhancement of Heat Transfer Using Nanofluids—An Overview
,” Renewable Sustainable Energy Rev.
, 14
(2
), pp. 629
–641
.10.1016/j.rser.2009.10.00412.
Kakaç
, S.
, and Pramuanjaroenkij
, A.
, 2009
, “Review of Convective Heat Transfer Enhancement With Nanofluids
,” Int. J. Heat Mass Transfer
, 52
(13–14
), pp. 3187
–3196
.10.1016/j.ijheatmasstransfer.2009.02.00613.
Wang
, X.-Q.
, and Mujumdar
, A. S.
, 2008
, “A Review on Nanofluids—Part I: Theoretical and Numerical Investigations
,” Braz. J. Chem. Eng.
, 25
(4
), pp. 613
–630
.10.1590/S0104-6632200800040000114.
Wang
, X.-Q.
, and Mujumdar
, A. S.
, 2008
, “A Review on Nanofluids—Part II: Experiments and Applications
,” Braz. J. Chem. Eng.
, 25
(4
), pp. 631
–648
.10.1590/S0104-6632200800040000215.
Wen
, D.
, Lin
, G.
, Vafaei
, S.
, and Zhang
, K.
, 2009
, “Review of Nanofluids for Heat Transfer Applications
,” Particuology
, 7
(2
), pp. 141
–150
.10.1016/j.partic.2009.01.00716.
Wu
, X.
, Wu
, H.
, and Cheng
, P.
, 2009
, “Pressure Drop and Heat Transfer of Al2O3–H2O Nanofluids Through Silicon Microchannels
,” J. Micromech. Microeng.
, 19
(10
), p. 105020
.10.1088/0960-1317/19/10/10502017.
Buongiorno
, J.
, 2006
, “Convective Transport in Nanofluids
,” ASME J. Heat Transfer
, 128
(3
), pp. 240
–250
.10.1115/1.215083418.
Kim
, S. J.
, McKrell
, T.
, Buongiorno
, J.
, and Lin-Wen
, H.
, 2010
, “Subcooled Flow Boiling Heat Transfer of Dilute Alumina, Zinc Oxide, and Diamond Nanofluids at Atmospheric Pressure
,” Nucl. Eng. Des.
, 240
(5
), pp. 1186
–1194
.10.1016/j.nucengdes.2010.01.02019.
Ahn
, H. S.
, Kim
, H.
, Jo
, H.
, Kang
, S.
, Chang
, W.
, and Kim
, M. H.
, 2010
, “Experimental Study of Critical Heat Flux Enhancement During Forced Convective Flow Boiling of Nanofluid on a Short Heated Surface
,” Int. J. Multiphase Flow
, 36
(5
), pp. 375
–384
.10.1016/j.ijmultiphaseflow.2010.01.00420.
Kim
, S. J.
, McKrell
, T.
, Buongiorno
, J.
, and Hu
, L.
, 2009
, “Experimental Study of Flow Critical Heat Flux in Alumina-Water, Zinc-Oxide-Water, and Diamond-Water Nanofluids
,” ASME J. Heat Transfer
, 131
(4
), p. 043204
.10.1115/1.307292421.
Kim
, S. J.
, Bang
, I. C.
, Buongiorno
, J.
, and Hu
, L. W.
, 2007
, “Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,” Int. J. Heat Mass Transfer
, 50
(19–20
), pp. 4105
–4116
.10.1016/j.ijheatmasstransfer.2007.02.00222.
Kim
, S. J.
, Bang
, I. C.
, Buongiorno
, J.
, and Hu
, L. W.
, 2007
, “Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,” Int. J. Heat Mass Transfer
, 50
(19–20
), pp. 4105
–4116
.10.1016/j.ijheatmasstransfer.2007.02.00223.
Kim
, S. J.
, Hu
, L.
, McKrell
, T.
, and Buongiorno
, J.
, 2008
, “Alumina Nanoparticles Enhance the Flow Boiling Critical Heat Flux of Water at Low Pressure
,” ASME J. Heat Transfer
, 130
(4
), p. 044501
.10.1115/1.281878724.
Kim
, H. D.
, and Kim
, M. H.
, 2007
, “Effect of Nanoparticle Deposition on Capillary Wicking that Influences the Critical Heat Flux in Nanofluids
,” Appl. Phys. Lett.
, 91
(1
), p. 014104
.10.1063/1.275464425.
Kim
, H.
, Ahn
, H. S.
, and Kim
, M. H.
, 2010
, “On the Mechanism of Pool Boiling Critical Heat Flux Enhancement in Nanofluids
,” ASME J. Heat Transfer
, 132
(6
), p. 061501
.10.1115/1.400074626.
Steinke
, M. E.
, and Kandlikar
, S. G.
, 2004
, “Control and Effect of Dissolved Air in Water During Flow Boiling in Microchannels
,” Int. J. Heat Mass Transfer
, 47
(8–9
), pp. 1925
–1935
.10.1016/j.ijheatmasstransfer.2003.09.03127.
Hosseini
, M.
, and Ghader
, S.
, 2010
, “A Model for Temperature and Particle Volume Fraction Effect on Nanofluid Viscosity
,” J. Mol. Liq.
, 153
(2–3
), pp. 139
–145
.10.1016/j.molliq.2010.02.003Copyright © 2015 by ASME
You do not currently have access to this content.