The preferable cooling solution for micro-electronic systems could be forced flow boiling in micro heat exchangers. Nanoparticle deposition affects nucleate boiling via alteration of surface roughness, capillary wicking, wettability, and nucleation site density. In this study, flow boiling was investigated using water and nanofluids in a single rectangular microchannel at different heat fluxes. The observed change in flow regime transition revealed the effect of nanoparticles on the onset of nucleate boiling (ONB) and the onset of bubble elongation (OBE). The addition of nanoparticles was found to stabilize bubble nucleation and growth and increase heat transfer in the thin film regions.

References

1.
Krishnan
,
S.
,
Garimella
,
S. V.
, and
Mahajan
,
R. V.
,
2007
, “
Towards a Thermal Moore's Law
,”
IEEE Trans. Adv. Packag.
,
30
(
3
), pp.
462
474
.10.1109/TADVP.2007.898517
2.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Kidlington, Oxford, UK
.
3.
Kandlikar
,
S. G.
,
2006
, “
Nucleation Characteristics and Stability Considerations During Flow Boiling in Microchannels
,”
Exp. Therm. Fluid Sci.
,
30
(
5
), pp.
441
447
.10.1016/j.expthermflusci.2005.10.001
4.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2005
, “
Numerical Simulation of Growth of a Vapor Bubble During Flow Boiling of Water in a Microchannel
,”
J. Microfluid. Nanofluid.
,
1
(
2
), pp.
137
145
.10.1007/s10404-004-0021-8
5.
Huo
,
X.
,
Chen
,
L.
,
Tian
,
Y. S.
, and
Karayiannis
,
T. G.
,
2004
, “
Flow Boiling and Flow Regimes in Small Diameter Tubes
,”
Appl. Therm. Eng.
,
24
(
8–9
), pp.
1225
1239
.10.1016/j.applthermaleng.2003.11.027
6.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2004
, “
Boiling Instability in Parallel Silicon Microchannels at Different Heat Flux
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3631
3641
.10.1016/j.ijheatmasstransfer.2004.04.012
7.
Edel
,
Z. J.
, and
Mukherjee
,
A.
,
2012
, “
Experimental Investigation of Vapor Bubble Growth During Flow Boiling in a Microchannel
,”
Int. J. Multiphase Flow
,
37
(
10
), pp.
1257
1265
.10.1016/j.ijmultiphaseflow.2011.07.007
8.
Peng
,
X. F.
,
Hu
,
H. Y.
, and
Wang
,
B. X.
,
1998
, “
Boiling Nucleation During Liquid Flow in Microchannels
,”
Int. J. Heat Mass Transfer
,
41
(
1
), pp.
101
106
.10.1016/S0017-9310(97)00096-3
9.
Li
,
J.
, and
Cheng
,
P.
,
2004
, “
Bubble Cavitation in a Microchannel
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2689
2698
.10.1016/j.ijheatmasstransfer.2003.11.020
10.
Daungthongsuk
,
W.
, and
Wongwises
,
S.
,
2007
, “
A Critical Review of Convective Heat Transfer of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
11
(
5
), pp.
797
817
.10.1016/j.rser.2005.06.005
11.
Godson
,
L.
,
Raja
,
B.
,
Lal
,
D. M.
, and
Wongwises
,
S.
,
2010
, “
Enhancement of Heat Transfer Using Nanofluids—An Overview
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
629
641
.10.1016/j.rser.2009.10.004
12.
Kakaç
,
S.
, and
Pramuanjaroenkij
,
A.
,
2009
, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3187
3196
.10.1016/j.ijheatmasstransfer.2009.02.006
13.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2008
, “
A Review on Nanofluids—Part I: Theoretical and Numerical Investigations
,”
Braz. J. Chem. Eng.
,
25
(
4
), pp.
613
630
.10.1590/S0104-66322008000400001
14.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2008
, “
A Review on Nanofluids—Part II: Experiments and Applications
,”
Braz. J. Chem. Eng.
,
25
(
4
), pp.
631
648
.10.1590/S0104-66322008000400002
15.
Wen
,
D.
,
Lin
,
G.
,
Vafaei
,
S.
, and
Zhang
,
K.
,
2009
, “
Review of Nanofluids for Heat Transfer Applications
,”
Particuology
,
7
(
2
), pp.
141
150
.10.1016/j.partic.2009.01.007
16.
Wu
,
X.
,
Wu
,
H.
, and
Cheng
,
P.
,
2009
, “
Pressure Drop and Heat Transfer of Al2O3–H2O Nanofluids Through Silicon Microchannels
,”
J. Micromech. Microeng.
,
19
(
10
), p.
105020
.10.1088/0960-1317/19/10/105020
17.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
18.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Lin-Wen
,
H.
,
2010
, “
Subcooled Flow Boiling Heat Transfer of Dilute Alumina, Zinc Oxide, and Diamond Nanofluids at Atmospheric Pressure
,”
Nucl. Eng. Des.
,
240
(
5
), pp.
1186
1194
.10.1016/j.nucengdes.2010.01.020
19.
Ahn
,
H. S.
,
Kim
,
H.
,
Jo
,
H.
,
Kang
,
S.
,
Chang
,
W.
, and
Kim
,
M. H.
,
2010
, “
Experimental Study of Critical Heat Flux Enhancement During Forced Convective Flow Boiling of Nanofluid on a Short Heated Surface
,”
Int. J. Multiphase Flow
,
36
(
5
), pp.
375
384
.10.1016/j.ijmultiphaseflow.2010.01.004
20.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L.
,
2009
, “
Experimental Study of Flow Critical Heat Flux in Alumina-Water, Zinc-Oxide-Water, and Diamond-Water Nanofluids
,”
ASME J. Heat Transfer
,
131
(
4
), p.
043204
.10.1115/1.3072924
21.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.10.1016/j.ijheatmasstransfer.2007.02.002
22.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.10.1016/j.ijheatmasstransfer.2007.02.002
23.
Kim
,
S. J.
,
Hu
,
L.
,
McKrell
,
T.
, and
Buongiorno
,
J.
,
2008
, “
Alumina Nanoparticles Enhance the Flow Boiling Critical Heat Flux of Water at Low Pressure
,”
ASME J. Heat Transfer
,
130
(
4
), p.
044501
.10.1115/1.2818787
24.
Kim
,
H. D.
, and
Kim
,
M. H.
,
2007
, “
Effect of Nanoparticle Deposition on Capillary Wicking that Influences the Critical Heat Flux in Nanofluids
,”
Appl. Phys. Lett.
,
91
(
1
), p.
014104
.10.1063/1.2754644
25.
Kim
,
H.
,
Ahn
,
H. S.
, and
Kim
,
M. H.
,
2010
, “
On the Mechanism of Pool Boiling Critical Heat Flux Enhancement in Nanofluids
,”
ASME J. Heat Transfer
,
132
(
6
), p.
061501
.10.1115/1.4000746
26.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Control and Effect of Dissolved Air in Water During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1925
1935
.10.1016/j.ijheatmasstransfer.2003.09.031
27.
Hosseini
,
M.
, and
Ghader
,
S.
,
2010
, “
A Model for Temperature and Particle Volume Fraction Effect on Nanofluid Viscosity
,”
J. Mol. Liq.
,
153
(
2–3
), pp.
139
145
.10.1016/j.molliq.2010.02.003
You do not currently have access to this content.