This paper investigates the flow field and thermal characteristics in the near-field region of film cooling jets through numerical simulations using Reynolds-averaged Navier–Stokes (RANS) and hybrid unsteady RANS (URANS)/large eddy simulation (LES) models. Detailed simulations of flow and thermal fields of a single-row of film cooling cylindrical holes with 30 deg inline injection on a flat plate are obtained for low (M = 0.5) and high (M = 1.5) blowing ratios under high free stream turbulence (FST) (10%). The realizable k‐ε model is used within the RANS framework and a realizable k‐ε-based detached eddy simulation (DES) is used as a hybrid URANS/LES model. Both models are used together with the two-layer zonal model for near-wall simulations. Steady and time-averaged unsteady film cooling effectiveness obtained using these models are compared with available experimental data. It is shown that hybrid URANS/LES models (DES in the present paper) predict more mixing both in the wall-normal and spanwise directions compared to RANS models, while unsteady asymmetric vortical structures of the flow can also be captured. The turbulent heat flux components predicted by the DES model are higher than those obtained by the RANS simulations, resulting in enhanced turbulent heat transfer between the jet and mainstream, and consequently better predictions of the effectiveness. Nevertheless, there still exist some discrepancies between numerical results and experimental data. Furthermore, the unsteady physics of jet and crossflow interactions and the jet lift-off under high FST is studied using the present DES results.

References

1.
Logan
,
E.
, ed.,
2003
,
Handbook of Turbomachinery
,
CRC Press
, Boca Raton, FL, Chap. 4.
2.
Yavuzkurt
,
S.
,
Moffat
,
R. J.
, and
Kays
,
M. J.
,
1980
, “
Full-Coverage Film-Cooling, Part 1: Three-Dimensional Measurements of Turbulence Structure
,”
J. Fluid Mech.
,
101
(
1
), pp.
129
158
.10.1017/S0022112080001577
3.
Cho
,
H. H.
, and
Goldstein
,
R. J.
,
1995
, “
Heat (Mass) Transfer and Film Cooling Effectiveness With Injection Through Discrete Holes – Part I: Within Holes and on the Back Surface
,”
ASME J. Turbomach.
,
117
(
3
), pp.
440
450
.10.1115/1.2835680
4.
Ingram
,
P.
, and
Yavuzkurt
,
S.
,
2013
, “
Derivation of 2-D Empirical Correlations for Film-Cooling Effectiveness and Heat Transfer Augmentation From Spanwise Averaged Data and Correlations
,”
ASME
Paper No. GT2013-95149. 10.1115/GT2013-95149
5.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics – Part I: Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
102
112
.10.1115/1.555433
6.
Hyams
,
D. G.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics – Part III: Streamwise Injection With Shaped Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
122
132
.10.1115/1.555435
7.
Lakehal
,
D.
,
2002
, “
Near-Wall Modeling of Turbulent Convective Heat Transport in Film Cooling of Turbine Blades With the Aid of Direct Numerical Simulation Data
,”
ASME J. Turbomach.
,
124
(
3
), pp.
485
498
.10.1115/1.1482408
8.
Yavuzkurt
,
S.
, and
Hassan
,
J. S.
,
2007
, “
Evaluation of Two-Equation Models of Turbulence in Predicting Film Cooling Performance Under High Free Stream Turbulence
,”
ASME
Paper No. GT2007-27184. 10.1115/GT2007-27184
9.
Yavuzkurt
,
S.
, and
Habte
,
M.
,
2008
, “
Effect of Computational Grid on Performance of Two-Equation Models of Turbulence for Film Cooling Applications
,”
ASME
Paper No. GT2008-50153. 10.1115/GT2008-50153
10.
Hoda
,
A.
, and
Acharya
,
S.
,
2000
, “
Predictions of a Film Cooling Jet in Crossflow With Different Turbulence Models
,”
ASME J. Turbomach.
,
122
(
3
), pp.
558
569
.10.1115/1.1302322
11.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.10.1017/S0022112094003800
12.
Tyagi
,
M.
, and
Acharya
,
S.
,
2003
, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME J. Turbomach.
,
125
(
4
), pp.
734
742
.10.1115/1.1625397
13.
Peet
,
Y. V.
, and
Lele
,
S. K.
,
2008
, “
Near Field of Film Cooling Jet Issued Into a Flat Plate Boundary Layer: LES Study
,”
ASME
Paper No. GT2008-50420. 10.1115/GT2008-50420
14.
Johnson
,
P. L.
, and
Kapat
,
J. S.
,
2013
, “
Large-Eddy Simulations of a Cylindrical Film Cooling Hole
,”
AIAA J. Thermophys. Heat Transfer
,
27
(
2
), pp.
255
273
.10.2514/1.T3890
15.
Roy
,
S.
,
Kapadia
,
S.
, and
Heidmann
,
J. D.
,
2003
, “
Film Cooling Analysis Using DES Turbulence Model
,”
ASME
Paper No. GT2003-38140. 10.1115/GT2003-38140
16.
Spalart
,
P.
,
Jou
,
W. H.
,
Strelets
,
M.
, and
Allmaras
,
S.
,
1997
, “
Comments on the Feasibility of LES for Wings and on the Hybrid RANS/LES Approach
,”
Advances in DNS/LES
,
C.
Liu
,
Z.
Liu
, and
L.
Sakell
, eds.,
Greyden Press
, Columbus, OH, pp.
137
148
.
17.
Kim
,
S. I.
, and
Hassan
,
I.
,
2010
, “
Unsteady Simulations of a Film Cooling Flow From an Inclined Cylindrical Jet
,”
AIAA J. Thermophys. Heat Transfer
,
24
(
1
), pp.
145
156
.10.2514/1.33167
18.
Menter
,
F. R.
,
2012
,
Best Practice: Scale-Resolving Simulations in ANSYS CFD
, ANSYS Germany GmbH, pp.
1
70
.
19.
Fröhlich
,
J.
, and
von Terzi
,
D. A.
,
2008
, “
Hybrid LES/RANS Methods for the Simulation of Turbulent Flows
,”
Prog. Aerosp. Sci.
,
44
(
5
), pp.
349
377
.10.1016/j.paerosci.2008.05.001
20.
Balaras
,
E.
,
Benocci
,
C.
, and
Piomelli
,
U.
,
1996
, “
Two-Layer Approximate Boundary Conditions for Large-Eddy Simulations
,”
AIAA J.
,
34
(
6
), pp.
1111
1119
.10.2514/3.13200
21.
Wang
,
M.
, and
Moin
,
P.
,
2002
, “
Dynamic Wall Modeling for Large-Eddy Simulation of Complex Turbulent Flows
,”
Phys. Fluids
,
14
(
7
), pp.
2043
2051
.10.1063/1.1476668
22.
Kawai
,
S.
, and
Larsson
,
J.
,
2013
, “
Dynamic Non-Equilibrium Wall-Modeling for Large Eddy Simulation at High Reynolds Numbers
,”
Phys. Fluids
,
25
(
1
), p.
015105
.10.1063/1.4775363
23.
Kawai
,
S.
, and
Asada
,
K.
,
2013
, “
Wall-Modeled Large-Eddy Simulation of High Reynolds Number Flow Around an Airfoil Near Stall Condition
,”
Comput. Fluids
,
85
, pp.
105
113
.10.1016/j.compfluid.2012.11.005
24.
Travin
,
A.
,
Shur
,
M.
,
Strelets
,
M.
, and
Spalart
,
P.
,
2002
, “
Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows
,”
Fluid Mech. Appl.
,
65
, pp.
239
254
.10.1007/0-306-48383-1_16
25.
Schmidt
,
S.
, and
Thiele
,
F.
,
2002
, “
Comparison of Numerical Methods Applied to the Flow Over Wall-Mounted Cubes
,”
Int. J. Heat Fluid Flow
,
23
(
3
), pp.
330
339
.10.1016/S0142-727X(02)00180-7
26.
Rodi
,
W.
,
1997
, “
Comparison of LES and RANS Calculation of the Flow Around Bluff Bodies
,”
J. Wind Eng. Ind. Aerodyn.
,
69–71
, pp.
55
75
.10.1016/S0167-6105(97)00147-5
27.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Experience With the SST Turbulence Model
,”
Turbulence, Heat and Mass Transfer 4
,
K.
Hanjalic
,
Y.
Nagano
, and
M.
Tummers
, eds.,
Begell House, Inc.
, New York, pp.
625
632
.
28.
Lübcke
,
H.
,
Rung
,
T.
, and
Thiele
,
F.
,
2002
, “
Prediction of the Spreading Mechanisms of 3D Turbulent Wall Jets With Explicit Reynolds-Stress Closures
,”
Engineering Turbulence Modeling and Experiments 5
,
W.
Rodi
and
N.
Fueyo
, eds.,
Elsevier
,
Amsterdam
, pp.
127
145
.
29.
ANSYS FLUENT 14.0 Theory Guide,
2011
.
30.
Hanjalić
,
K.
,
2004
, “
Closure Models for Incompressible Turbulent Flows
,” (Lecture Notes at von Kármán Institute), p.
75
.
31.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
32.
Spalart
,
P. R.
,
2001
, “
Young-Person's Guide to Detached-Eddy Simulation Grids
,” NASA Report No. CR-2001-211032.
33.
Chen
,
H. C.
, and
Patel
,
V. C.
,
1988
, “
Near-Wall Turbulence Models for Complex Flows Including Separation
,”
AIAA J.
,
26
(
6
), pp.
641
648
.10.2514/3.9948
34.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.10.1115/1.2927894
35.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
807
813
.10.1115/1.2840938
36.
Foroutan
,
H.
, and
Yavuzkurt
,
S.
,
2013
, “
A Model for Simulation of Turbulent Flow With High Free Stream Turbulence Implemented in OpenFOAM
,”
ASME J. Turbomach.
,
135
(
3
), p.
031022
.10.1115/1.4007530
37.
Mayhew
,
J. E.
,
Baughn
,
J. W.
, and
Byerley
,
A. R.
,
2003
, “
The Effect of Freestream Turbulence on Film Cooling Adiabatic Effectiveness
,”
Int. J. Heat Fluid Flow
,
24
(
5
), pp.
669
679
.10.1016/S0142-727X(03)00081-X
38.
Johnson
,
P. L.
,
Shyam
,
V.
, and
Hah
,
C.
,
2011
, “
Reynolds-Averaged Navier-Stokes Solutions to Flat Plate Film Cooling Scenarios
,” NASA Report No. 2011-217025.
39.
Ziefle
,
J.
, and
Kleiser
,
L.
,
2013
, “
Numerical Investigation of a Film-Cooling Flow Structure: Effect of Crossflow Turbulence
,”
ASME J. Turbomach.
,
135
(
4
), p.
041001
.10.1115/1.4023361
40.
Mathey
,
F.
,
Cokljat
,
D.
,
Bertoglio
,
J. P.
, and
Sergent
,
E.
,
2006
, “
Assessment of the Vortex Method for Large Eddy Simulation Inlet Conditions
,”
Prog. Comput. Fluid Dyn.
,
6
(
1–3
), pp.
58
67
.10.1504/PCFD.2006.009483
41.
Foroutan
,
H.
, and
Yavuzkurt
,
S.
,
2012
, “
Simulation of Flow in a Simplified Draft Tube: Turbulence Closure Considerations
,”
IOP Conference Series: Earth Environ. Sci.
, Vol. 15, p. 022020.10.1088/1755-1315/15/2/022020
42.
Bons
,
J. P.
,
MacArthur
,
C. D.
, and
Rivir
,
R. B.
,
1994
, “
The Effect of High Freestream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
814
825
.10.1115/1.2840939
43.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
44.
Shur
,
M.
,
Spalart
,
P. R.
,
Strelets
,
M.
, and
Travin
,
A.
,
1999
, “
Detached-Eddy Simulation of an Airfoil at High Angle of Attack
,”
Engineering Turbulence Modeling and Experiments 4
,
W.
Rodi
and
D.
Laurence
, eds.,
Elsevier
,
Amsterdam
, pp.
669
678
.
45.
Piomelli
,
U.
,
2010
, “
Wall-Modeled Large-Eddy Simulations: Present Status and Prospects
,”
Direct and Large-Eddy Simulation VII
,
Springer
,
Amsterdam
, pp.
1
10
.
46.
Sagaut
,
P.
,
Deck
,
S.
, and
Terracol
,
M.
,
2006
, “
Multiscale and Multiresolution Approaches in Turbulence
,”
Imperial College Press
,
London
.
47.
Kok
,
J. C.
,
Dol
,
H. S.
,
Oskam
,
B.
, and
van der
Ven
,
H.
,
2004
, “
Extra-Large Eddy Simulation of Massively Separated Flows
,”
AIAA
Paper No. 2004-264. 10.2514/6.2004-264
48.
Thole
,
K.
, and
Bogard
,
D.
,
1996
, “
High Freestream Turbulence Effects on Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
,
118
(
2
), pp.
276
284
.10.1115/1.2817374
You do not currently have access to this content.