In this work, the vapor film thickness below a stagnant Leidenfrost drop at saturation temperature is predicted by performing a balance of the dominant forces acting on the drop. Inclusion of a new momentum force term is proposed. Two assumptions are considered for the radial velocity of vapor at drop–vapor interface. One of them is zero radial velocity at interface and the other is zero shear at interface. The actual scenario is expected to lie between these extremes. This is also supported by the comparison against experimental data on vapor film thickness. The effect of convection in the vapor layer is also modeled and it is shown that the use of ad hoc heat transfer coefficients in the vapor layer to explain difference between experiments and prediction is incorrect. Finally, it is highlighted that accurate prediction of the vapor layer characteristics also requires proper quantification of the shape of the drop–vapor interface.

References

1.
Leidenfrost
,
J. G.
,
1966
, “
On the Fixation of Water in Diverse Fire
,”
Int. J. Heat Mass Transfer
,
9
(
11
), pp.
1153
1166
.
2.
Biance
,
A. L.
,
Christophe
,
C.
, and
Quere
,
D.
,
2003
, “
Leidenfrost Drops
,”
Phys. Fluids
,
15
(
6
), pp.
1632
1637
.
3.
Myers
,
T. G.
, and
Charpin
,
J. P. F.
,
2009
, “
A Mathematical Model of the Leidenfrost Effect on an Axisymmetric Droplet
,”
Phys. Fluids
,
21
(
6
), p.
063101
.
4.
Burton
,
J. C.
,
Sharpe
,
A. L.
,
van der Veen
,
R. C. A.
,
Franco
,
A.
, and
Nagel
,
S. R.
,
2012
, “
Geometry of the Vapor Layer Under a Leidenfrost Drop
,”
Phys. Rev. Lett.
,
109
(
7
), p.
074301
.
5.
Caswell
,
T. A.
,
2014
, “
Dynamics of the Vapor Layer Below a Leidenfrost Drop
,”
Phys. Rev. E
,
90
(
1
), p.
013014
.
6.
Vakarelski
,
I. U.
,
Marston
,
J. O.
,
Chan
,
D. Y. C.
, and
Thoroddsen
,
S. T.
,
2011
, “
Drag Reduction by Leidenfrost Vapor Layers
,”
Phys. Rev. Lett.
,
106
(
21
), p.
214501
.
7.
Gottfried
,
B. S.
,
Lee
,
C. J.
, and
Bell
,
K. J.
,
1966
, “
The Leidenfrost Phenomenon: Film Boiling of Liquid Droplets on a Flat Plate
,”
Int. J. Heat Mass Transfer
,
9
(
11
), pp.
1167
1188
.
8.
Sobac
,
B.
,
Rednikov
,
A.
,
Dorbolo
,
S.
, and
Colinet
,
P.
,
2014
, “
Leidenfrost Effect: Accurate Drop Shape Modeling and Refined Scaling Laws
,”
Phys. Rev. E
,
90
(
5
), p.
053011
.
9.
del Río
,
O. I.
, and
Neumann
,
A. W.
,
1997
, “
Axisymmetric Drop Shape Analysis: Computational Methods for the Measurement of Interfacial Properties From the Shape and Dimensions of Pendant and Sessile Drops
,”
J. Colloid Interface Sci.
,
196
(
2
), pp.
136
147
.
You do not currently have access to this content.