In this paper, an analysis on a bioconvection flow of a nanofluid past a vertical flat plate in the presence of an out power-law stream is made. The passively controlled nanofluid model is used to approximate this flow problem, which is believed to be physically more realistic than previously commonly used actively controlled nanofluid models. The Lie group transformation method is introduced to seek similarity solutions of such nanobioconvection flows for the first time. The reduced governing equations are then solved numerically with a finite difference technique. Besides, the influences of various parameters such as the Grashof number, the Prandtl number, the bioconvection Rayleigh number, the Lewis number, the bioconvection Péclet number, and the Schimdt number on the distributions of the density of motile micro-organisms profiles, as well as the local skin friction coefficient, the local Nusselt number, the local wall mass flux, and the local density of the motile micro-organisms are analyzed and discussed.

References

1.
Tsai
,
T.
,
Liou
,
D.
, and
Kuo
,
L.
,
2009
, “
Rapid Mixing Between Ferro-Nanofluid and Water in a Semiactive Y-Type Micromixer
,”
Sens. Actuators, A
,
153
(
2
), pp.
267
273
.10.1016/j.sna.2009.05.004
2.
Kuznetsov
,
A. V.
,
2010
, “
The Onset of Nanofluid Bioconvection in a Suspension Containing Both Nanoparticles and Gyrotactic Microorganisms
,”
Int. Commun. Heat Mass Transfer
,
37
(
10
), pp.
1421
1425
.10.1016/j.icheatmasstransfer.2010.08.015
3.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
4.
Rohni
,
A.
,
Ahmad
,
S.
,
Ismail
,
A. I.
, and
Pop
,
I.
,
2013
, “
Flow and Heat Transfer Over an Unsteady Shrinking Sheet With Suction in a Nanofluid Using Buongiorno's Model
,”
Int. Commun. Heat Mass Transfer
,
43
, pp.
75
80
.10.1016/j.icheatmasstransfer.2013.02.001
5.
Zaimi
,
K.
,
Ishak
,
A.
, and
Pop
,
I.
,
2014
, “
Unsteady Flow Due to a Contracting Cylinder in a Nanofluid Using Buongiorno's Model
,”
Int. J. Heat Mass Transfer
,
68
, pp.
509
513
.10.1016/j.ijheatmasstransfer.2013.09.047
6.
Kuznetsov
,
A. V.
,
2011
, “
Nanofluid Bio-Thermal Convection: Simultaneous Effects of Gyrotactic and Oxytactic Micro-Organisms
,”
Fluid Dyn. Res.
,
43
(
5
), p.
055505
.10.1088/0169-5983/43/5/055505
7.
Kuznetsov
,
A. V.
,
2011
, “
Non-Oscillatory and Oscillatory Nanofluid Bio-Thermal Convection in a Horizontal Layer of Finite Depth
,”
Eur. J. Mech. B/Fluids
,
30
(
2
), pp.
156
165
.10.1016/j.euromechflu.2010.10.007
8.
Kuznetsov
,
A. V.
,
2011
, “
Nanofluid Bioconvection in Water-Based Suspensions Containing Nanoparticles and Oxytactic Microorganisms: Oscillatory Instability
,”
Nanoscale Res. Lett
.10.1186/1556-276X-6-100
9.
Kuznetsov
,
A. V.
,
2012
, “
Nanofluid Bioconvection: Interaction of Microorganisms Oxytactic Upswimming, Nanoparticle Distribution, and Heating/Cooling From Below
,”
Theor. Comput. Fluid Dyn.
,
26
(
1–4
), pp.
291
310
.10.1007/s00162-011-0230-1
10.
Tham
,
L.
,
Nazar
,
R.
, and
Pop
,
I.
,
2013
, “
Mixed Convection Flow Over a Solid Sphere Embedded in a Porous Medium Filled by a Nanofluid Containing Gyrotactic Microorganisms
,”
Int. J. Heat Mass Transfer
,
62
, pp.
647
660
.10.1016/j.ijheatmasstransfer.2013.03.012
11.
Tham
,
L.
,
Nazar
,
R.
, and
Pop
,
I.
,
2013
, “
Steady Mixed Convection Flow on a Horizontal Circular Cylinder Embedded in a Porous Medium Filled by a Nanofluid Containing Gyrotactic Microorganisms
,”
ASME J. Heat Transfer
,
135
(
10
), p.
102601
.10.1115/1.4024387
12.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2013
, “
The Cheng–Minkowycz Problem for Natural Convective Boundary Layer Flow in a Porous Medium Saturated by a Nanofluid: A Revised Model
,”
Int. J. Heat Mass Transfer
,
65
, pp.
682
685
.10.1016/j.ijheatmasstransfer.2013.06.054
13.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2014
, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate: A Revised Model
,”
Int. J. Therm. Sci.
,
77
, pp.
126
129
.10.1016/j.ijthermalsci.2013.10.007
14.
Xu
,
H.
, and
Pop
,
I.
,
2014
, “
Mixed Convection Flow of a Nanofluid Over a Stretching Surface With Uniform Free Stream in the Presence of Both Nanoparticles and Gyrotactic Microorganisms
,”
Int. J. Heat Mass Transfer
,
75
, pp.
610
623
.10.1016/j.ijheatmasstransfer.2014.03.086
15.
Xu
,
H.
, and
Pop
,
I.
,
2014
, “
Fully Developed Mixed Convection Flow in a Horizontal Channel Filled by a Nanofluid Containing Both Nanoparticles and Gyrotactic Microorganisms
,”
Eur. J. Mech. B
,
46
, pp.
37
45
.10.1016/j.euromechflu.2014.02.005
16.
Adams
,
J. F.
,
1969
,
Lectures on Lie Groups
(Chicago Lectures in Mathematics),
The University of Chicago Press
,
Chicago
, IL.
17.
Abdul-Kahar
,
R.
,
Kandasamy
,
R.
, and
Muhaimin
,
I.
,
2011
, “
Scaling Group Transformation for Boundary-Layer Flow of a Nanofluid Past a Porous Vertical Stretching Surface in the Presence of Chemical Reaction With Heat Radiation
,”
Comput. Fluids
,
52
, pp.
15
21
.10.1016/j.compfluid.2011.08.003
18.
Das
,
K.
,
2013
, “
Lie Group Analysis for Nanofluid Flow Past a Convectively Heated Stretching Surface
,”
Appl. Math. Comput.
,
221
, pp.
547
557
.10.1016/j.amc.2013.06.073
19.
Inouye
,
K.
, and
Tate
,
A.
,
1974
, “
Finite-Difference Version of Quasi-Linearization Applied to Boundary-Layer Equations
,”
AIAA J.
,
12
(
4
), pp.
558
560
.10.2514/3.49286
20.
Ramachandran
,
N.
,
Chen
,
T. S.
, and
Armaly
,
B. F.
,
1988
, “
Mixed Convection in Stagnation Flows Adjacent to Vertical Surfaces
,”
ASME J. Heat Transfer
,
110
(
2
), pp.
373
377
.10.1115/1.3250494
21.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2007
, “
Mixed Convection on the Stagnation Point Flow Toward a Vertical, Continuously Stretching Sheet
,”
ASME J. Heat Transfer
,
129
(
8
), pp.
1087
1090
.10.1115/1.2737482
You do not currently have access to this content.