Thermosolutocapillary convection within a rectangular cavity with dynamic free surface is numerically investigated in the absence of gravitational effects. Both the temperature and solute concentration gradients are applied horizontally. The free surface deformation is captured by the level set method. Two cases of the ratio of thermal to solutal Marangoni number Rσ < −1 and Rσ = −1 are considered. For Rσ< −1, the free surface bulges out near the left wall and bulges in near the right wall; with the increase of Marangoni number, the free surface deformation decreases and with the increase of capillary number and aspect ratio, it increases. For Rσ= −1, the free surface bulges out near the left and right walls and bulges in at the central zone; with the increase of Marangoni number, the free surface deformation mode is changed and with the increase of capillary number and aspect ratio, the free surface deformation increases.

References

1.
Bergman
,
T. L.
,
1986
, “
Numerical Simulation of Double-Diffusive Marangoni Convection
,”
Phys. Fluids
,
29
(
7
), pp.
2103
2108
.10.1063/1.865597
2.
Chen
,
Z. W.
,
Li
,
Y. S.
, and
Zhan
,
J. M.
,
2010
, “
Double-Diffusive Marangoni Convection in a Rectangular Cavity: Onset of Convection
,”
Phys. Fluids
,
22
(
3
), p.
034106
.10.1063/1.3333436
3.
Li
,
Y. S.
,
Chen
,
Z. W.
, and
Zhan
,
J. M.
,
2010
, “
Double-Diffusive Marangoni Convection in a Rectangular Cavity: Transition to Chaos
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5223
5231
.10.1016/j.ijheatmasstransfer.2010.07.037
4.
Zhan
,
J. M.
,
Chen
,
Z. W.
,
Li
,
Y. S.
, and
Nie
,
Y. H.
,
2010
, “
Three-Dimensional Double-Diffusive Marangoni Convection in a Cubic Cavity With Horizontal Temperature and Concentration Gradients
,”
Phys. Rev. E
,
82
(
6
), p.
066305
.10.1103/PhysRevE.82.066305
5.
Chen
,
C. F.
, and
Chan
,
C. L.
,
2010
, “
Stability of Buoyancy and Surface Tension Driven Convection in a Horizontal Double-Diffusive Fluid Layer
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1563
1569
.10.1016/j.ijheatmasstransfer.2009.11.022
6.
Li
,
Y. R.
,
Gong
,
Z. X.
,
Wu
,
C. M.
, and
Wu
,
S. Y.
,
2012
, “
Steady Thermal-Solutal Capillary Convection in a Shallow Annular Pool With the Radial Temperature and Concentration Gradients
,”
Sci. China Technol. Sci.
,
55
(
8
), pp.
2176
2183
.10.1007/s11431-012-4924-4
7.
Li
,
Y. R.
,
Zhou
,
Y. L.
,
Tang
,
J. W.
, and
Gong
,
Z. X.
,
2013
, “
Two-Dimensional Numerical Simulation for Flow Pattern Transition of Thermal-Solutal Capillary Convection in an Annular Pool
,”
Microgravity Sci. Technol.
,
25
(
4
), pp.
225
230
.10.1007/s12217-013-9343-z
8.
Sim
,
B. C.
,
Kim
,
W. S.
, and
Zebib
,
A.
,
2004
, “
Dynamic Free-Surface Deformations in Axisymmetric Liquid Bridges
,”
Adv. Space Res.
,
34
(
7
), pp.
1627
1634
.10.1016/j.asr.2004.09.003
9.
Koster
,
J. N.
,
1994
, “
Early Mission Report on the Four ESA Facilities: Biorack; Bubble, Drop and Particle Unit; Critical Point Facility and Advanced Protein Crystallization Facility Flown on the IML-2 Spacelab Mission
,” Microgravity News From ESA Report No.7, pp.
2
7
.
10.
Mundrane
,
M.
,
Xu
,
J.
, and
Zebib
,
A.
,
1995
, “
Thermocapillary Convection in a Rectangular Cavity With a Deformable Interface
,”
Adv. Space Res.
,
16
(
7
), pp.
41
53
.10.1016/0273-1177(95)00132-X
11.
Saghir
,
M. Z.
,
Abbaschian
,
R.
, and
Raman
,
R.
,
1996
, “
Numerical Analysis of Thermocapillary Convection in Axisymmetric Liquid Encapsulated InBi
,”
J. Cryst. Growth
,
169
(
1
), pp.
110
117
.10.1016/0022-0248(96)00258-8
12.
Hamed
,
M.
, and
Floryan
,
J. M.
,
2000
, “
Marangoni Convection. Part 1. A Cavity With Differentially Heated Sidewalls
,”
J. Fluid Mech.
,
405
(
1
), pp.
79
110
.10.1017/S002211209900734X
13.
Gupta
,
N. R.
,
Hossein
,
H. H.
, and
Borhan
,
A.
,
2006
, “
Thermocapillary Flow in Double-Layer Fluid Structures: An Effective Single-Layer Model
,”
J. Colloid Interface Sci.
,
293
(
1
), pp.
158
171
.10.1016/j.jcis.2005.06.036
14.
Liang
,
R. Q.
,
Ji
,
S. Y.
, and
Li
,
Z.
,
2014
, “
Thermocapillary Convection in Floating Zone With Axial Magnetic Fields
,”
Microgravity Sci. Technol.
,
25
(
5
), pp.
285
293
.10.1007/s12217-013-9353-x
15.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
16.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.10.1006/jcph.1994.1155
17.
Liang
,
R. Q.
,
Liao
,
Z. Q.
,
Jiang
,
W.
,
Duan
,
G. D.
,
Shi
,
J. Y.
, and
Liu
,
P.
,
2011
, “
Numerical Simulation of Water Droplets Falling Near a Wall: Existence of Wall Repulsion
,”
Microgravity Sci. Technol.
,
23
(
1
), pp.
59
65
.10.1007/s12217-010-9230-9
18.
Ni
,
M. J.
,
Komori
,
S.
, and
Abdou
,
M.
,
2010
, “
A Variable-Density Projection Method for Interfacial Flows
,”
Numer. Heat Transfer, Part B
,
44
(
6
), pp.
553
574
.10.1080/716100497
19.
Zhou
,
X. M.
, and
Huang
,
H. L.
,
2010
, “
Numerical Simulation of Steady Thermocapillary Convection in a Two-Layer System Using Level Set Method
,”
Microgravity Sci. Technol.
,
22
(
4
), pp.
223
232
.10.1007/s12217-010-9178-9
You do not currently have access to this content.