This study shows that there exist a pair of universal and unique phase diagrams to describe general development of the pore shape in solid, resulting from a bubble captured by a solidification front. Like thermodynamics, phase diagrams have advantages to generally identify the states and design processes of a system. Pore formation and its shape in solids influence not only microstructure of materials but also contemporary issues of biology, engineering, foods, geophysics, and climate change, etc. In this study, a pair of phase diagrams is thus found to be under dimensionless coordinate systems of dimensionless apex radius, contact angle, and base radius of the bubble cap, as well as solidification rate, contact angle, and growth rate of base radius. The computed results of the development of the pore shape agree with experimental data. The pore shape in solid thus can be optimistically predicted and controlled by choosing a desired path on phase diagrams.

References

1.
Langer
,
M.
,
Westermann
,
S.
,
Walter Anthony
,
K.
,
Wischnewski
,
K.
, and
Boike
,
J.
,
2015
, “
Frozen Ponds: Production and Storage of Methane During the Arctic Winter in a Lowland Tundra Landscape in Northern Siberia, Lena River Delta
,”
Biogeosciences
,
12
(
4
), pp.
977
990
.
2.
Lefebvre
,
L.-P.
,
Banhart
,
J.
, and
Dunand
,
D. C.
,
2008
, “
Porous Metals and Metallic Foams: Current Status and Recent Developments
,”
Adv. Eng. Mater.
,
10
(
9
), pp.
775
787
.
3.
Sulfredge
,
C. D.
,
Chow
,
L. C.
, and
Tagavi
,
K. A.
,
1993
, “
Artificial Dispersal of Void Patterns in Unidirectional Freezing
,”
Exp. Heat Transfer
,
6
(
4
), pp.
389
409
.
4.
Ekemen
,
Z.
,
Chang
,
H.
,
Ahmad
,
Z.
,
Bayram
,
C.
,
Rong
,
Z.
, and
Denkbas
,
E. B.
,
2011
, “
Fabrication of Biomaterials Via Controlled Protein Bubble Generation and Manipulation
,”
Biomacromolecules
,
12
(
12
), pp.
4291
4300
.
5.
Oliete
,
P. B.
, and
Peña
,
J. I.
,
2007
, “
Study of the Gas Inclusions in Al2O3/Y3Al5O12 and Al2O3/Y3Al5O12/ZrO2 Eutectic Fibers Grown by Laser Floating Zone
,”
J. Cryst. Growth
,
304
(
2
), pp.
514
519
.
6.
Torkar
,
M.
,
Tehovnik
,
F.
,
Arh
,
B.
,
Jenko
,
M.
,
Sarler
,
B.
, and
Rajic
,
Z.
,
2014
, “
Microstructure Characteristics of the Model Spring Steel 51CrV4
,”
Mater. Technol.
,
48
(4), pp.
537
543
.
7.
Nakajima
,
H.
,
2007
, “
Fabrication, Properties and Application of Porous Metals With Directional Pores
,”
Prog. Mater. Sci.
,
52
(
7
), pp.
1091
1173
.
8.
Ramirez
,
J. E.
,
Han
,
B.
, and
Liu
,
S.
,
1994
, “
Effect of Welding Variables and Solidification Substructure on Weld Metal Porosity
,”
Metall. Mater. Trans. A
,
25
(
10
), pp.
2285
2294
.
9.
Pastor
,
M.
,
Zhao
,
H.
,
Martukanitz
,
R. P.
, and
DebRoy
,
T.
,
1999
, “
Porosity, Underfill and Magnesium Loss During Continuous Wave Nd:YAG Laser Welding of Thin Plates of Aluminum Alloys 5182 and 5754
,”
Weld. J.
,
78
(6), pp.
207s
216s
.
10.
Kou
,
S.
,
2003
,
Welding Metallurgy
, 2nd ed.,
Wiley
,
New York
.
11.
Elmer
,
J. W.
,
Vaja
,
J.
,
Carlton
,
H. D.
, and
Pong
,
R.
,
2015
, “
The Effect of Ar and N2 Shielding Gas on Laser Weld Porosity in Steel, Stainless Steels, and Nickel
,”
Weld. J.
,
94
(10), pp.
313-s
325-s
.
12.
Wei
,
P. S.
,
Huang
,
C. C.
, and
Lee
,
K. W.
,
2003
, “
Nucleation of Bubbles on a Solidification Front-Experiment and Analysis
,”
Metall. Mater. Trans. B
,
34
(
3
), pp.
321
332
.
13.
Poon
,
G. G.
, and
Peters
,
B.
,
2013
, “
A Stochastic Model for Nucleation in the Boundary Layer During Solvent Freeze-Concentration
,”
Cryst. Growth Des.
,
13
(
11
), pp.
4642
4647
.
14.
Wei
,
P. S.
, and
Chao
,
T. C.
,
2015
, “
The Effects of Entrainment on Pore Shape in Keyhole Mode Welding
,”
ASME J. Heat Transfer
,
137
(
8
), p.
082102
.
15.
Wei
,
P. S.
,
Kuo
,
Y. K.
,
Chiu
,
S. H.
, and
Ho
,
C. Y.
,
2000
, “
Shape of a Pore Trapped in Solid During Solidification
,”
Int. J. Heat Mass Transfer
,
43
(
2
), pp.
263
280
.
16.
Wei
,
P. S.
, and
Ho
,
C. Y.
,
2002
, “
An Analytical Self-Consistent Determination of a Bubble With a Deformed Cap Trapped in Solid During Solidification
,”
Metall. Mater. Trans. B
,
33
(
1
), pp.
91
100
.
17.
Wei
,
P. S.
, and
Hsiao
,
S. Y.
,
2012
, “
Pore Shape Development From a Bubble Captured by a Solidification Front
,”
Int. J. Heat Mass Transfer
,
55
(25–26), pp.
8129
8138
.
18.
Wei
,
P. S.
, and
Hsiao
,
S. Y.
,
2015
, “
Pore Formation From Bubble Entrapment by a Solidification Front
,”
Am. J. Heat Mass Transfer
,
2
(2), pp.
76
88
.
19.
Andriotaki
,
P. N.
,
2005
, “
Propagation of Surface (Seismic) Waves: Ordinary Differential Equations With Strongly Nonlinear Damping
,”
Theor. Appl. Fract. Mech.
,
43
(
3
), pp.
308
323
.
20.
O'Brien
,
S. B. G.
,
1991
, “
On the Shape of Small Sessile and Pendant Drops by Singular Perturbation Techniques
,”
J. Fluid Mech.
,
233
(12), pp.
519
537
.
21.
Wei
,
P. S.
, and
Hsiao
,
C. C.
,
2009
, “
Microbubble or Pendant Drop Control Described by a General Phase Diagram
,”
Int. J. Heat Mass Transfer
,
52
(5–6), pp.
1304
1312
.
22.
Wei
,
P. S.
,
Huang
,
C. C.
,
Wang
,
Z. P.
,
Chen
,
K. Y.
, and
Lin
,
C. H.
,
2004
, “
Growths of Bubble/Pore Sizes in Solid During Solidification—An In Situ Measurement and Analysis
,”
J. Cryst. Growth
,
270
(3–4), pp.
662
673
.
You do not currently have access to this content.