The main objective of this work is to investigate the performance of the v2–f model for the predictions of turbulent natural and mixed convection flows. For this purpose, a finite volume-based flow solver is developed for a collocated grid arrangement, and the v2–f model is implemented for turbulence modeling. For natural convection flows, a tall cavity with the aspect ratio of 28.68 is selected as a test case. Mixed convection in a square cavity, ascending flow in a vertical pipe with constant wall flux, and fully developed mixed convection in a vertical channel are considered as test cases for buoyancy-driven mixed convection flows. To evaluate the performance of the v2f model, results obtained from the present study have been compared with the existing data of experimental studies or direct numerical simulations (DNS). Results obtained from two-equation models, viz., the RNG k, realizable k, and SST k models are also presented for comparison. Overall, the v2f model predicts flow and heat transfer characteristics of natural and mixed convection flows satisfactorily.

References

1.
Patel
,
V. C.
,
Rodi
,
W.
, and
Scheuerer
,
G.
,
1984
, “
Turbulence Models for Near-Wall and Low Reynolds Number Flows: A Review
,”
AIAA J.
,
23
, pp.
1308
1319
.
2.
Murakami
,
S.
,
Kato
,
S.
,
Chikamoto
,
T.
,
Laurence
,
D.
, and
Blay
,
D.
,
1996
, “
New Low-Reynolds-Number k-ε Model Including Damping Effect Due to Buoyancy in a Stratified Flow Field
,”
Int. J. Heat Mass Transfer
,
39
(
16
), pp.
3483
3496
.
3.
Federov
,
A. G.
, and
Viskanta
,
R.
,
1997
, “
Turbulent Natural Convection Heat Transfer in an Asymmetrically Heated, Vertical Parallel-Plate Channel
,”
Int. J. Heat Mass Transfer
,
40
(
16
), pp.
3849
3860
.
4.
Costa
,
J. J.
,
Oliveira
,
L. A.
, and
Blay
,
D.
,
1999
, “
Test of Several Versions for the k-ε Type Turbulence Modeling of Internal Mixed Convection Flows
,”
Int. J. Heat Mass Transfer
,
42
(
23
), pp.
4391
4409
.
5.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(8), pp.
269
289
.
6.
Hsieh
,
K. J.
, and
Lien
,
F. S.
,
2004
, “
Numerical Modeling of Buoyancy Driven Turbulent Flows in Enclosures
,”
Int. J. Heat Fluid Flow
,
25
(
4
), pp.
659
670
.
7.
Durbin
,
P. A.
,
1991
, “
Near-Wall Turbulence Closure Modeling Without ‘Damping Functions'
,”
Theor. Comput. Fluid Dyn.
,
3
(1), pp.
1
13
8.
Durbin
,
P. A.
,
1995
, “
Separated Flow Computation With the k-ε-v2 Model
,”
AIAA J.
,
33
, pp.
2634
2649
.
9.
Lient
,
F.
, and
Durbin
,
P.
,
1996
, “
Non-Linear kεv2¯/k Modeling With Application to High Lift
,”
Summer Program, Center for Turbulence Research
, pp.
5
26
.
10.
Lien
,
F.
, and
Kalitzin
,
G.
,
2001
, “
Computations of Transonic Flow With the v2–f Turbulence Model
,”
Int. J. Heat Fluid Flow
,
22
(
1
), pp.
53
61
.
11.
Davidson
,
L.
,
Nielsen
,
P. V.
, and
Sveningsson
,
A.
,
2003
, “
Modifications of the v2–f Model for Computing the Flow in a 3D Wall Jet
,”
4th International Symposium on Turbulence Heat and Mass Transfer
,
Antalya, Turkey
, pp. 577–584.
12.
Laurence
,
D. R.
,
Uribe
,
J. C.
, and
Utyuzhnikov
,
S. V.
,
2004
, “
A Robust Formulation of the v2–f Model
,”
Flow, Turbul. Combust.
,
73
, pp.
169
185
.
13.
Billard
,
F.
, and
Laurence
,
D.
,
2012
, “
A Robust kεv2¯/k Elliptic Blending Turbulence Model Applied to Near Wall Separated and Buoyant Flows
,”
Int. J. Heat Fluid Flow
,
33
(
1
), pp.
45
58
.
14.
Tieszen
,
S.
,
Ooi
,
A.
,
Durbin
,
P.
, and
Behnia
,
M.
,
1998
, “
Modeling of Natural Convection Heat Transfer
,”
Summer Program, Center for Turbulence Research
, pp.
287
301
.
15.
Zhang
,
Z.
,
Zhang
,
W.
,
Zhai
,
Z.
, and
Chen
,
Q.
,
2007
, “
Evaluation of Various Turbulence Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD: Part 2: Comparison With Experimental Data From Literature
,”
HVACR Res.
,
13
(
6
), pp.
871
886
.
16.
Keshmiri
,
A.
,
Cotton
,
M. A.
,
Addad
,
Y.
, and
Laurence
,
D.
,
2012
, “
Turbulence Models and Large Eddy Simulations Applied to Ascending Mixed Convection Flows
,”
Flow, Turbul. Combust.
,
89
(
3
), pp.
407
434
.
17.
Iaccarino
,
G.
,
2001
, “
Predictions of a Turbulent Separated Flow Using Commercial CFD Codes
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
819
828
.
18.
Heschl
,
C.
,
Inthavong
,
K.
, and
Tu
,
J.
,
2012
, “
Evaluation of Eddy Viscosity Models to Predict Convective Heat Transfer
,”
Ninth International Conference on CFD in the Materials and Process Industries
,
CSIRO
,
Melbourne, Australia
, Dec. 10–12.
19.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
20.
Shih
,
T.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k−ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
21.
Fluent
,
2006
,
Fluent 6.3 User's Guide
,
Fluent, Inc.
,
Lebanon, NH
.
22.
Wolfshtein
,
M.
,
1969
, “
The Velocity and Temperature Distribution in One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
301
318
.
23.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.
24.
Durbin
,
P. A.
, and
Pettersson-Reif
,
B. A.
,
2011
,
Statistical Theory and Modeling for Turbulent Flow
, 2nd ed.,
Wiley
, Chichester,
UK
.
25.
Betts
,
P. L.
, and
Bokhari
,
I. H.
,
2000
, “
Experiments on Turbulent Natural Convection in an Enclosed Tall Cavity
,”
Int. J. Heat Fluid Flow
,
21
(
6
), pp.
675
683
.
26.
Lien
,
F. S.
, and
Leschziner
,
M. A.
,
1999
, “
Computational Modeling of a Transitional 3D Turbine-Cascade Flow Using a Modified Low-Re k-ε Model and a Multi-Block Scheme
,”
Int. J. Comput. Fluid Dyn.
,
12
(
1
), pp.
1
15
.
27.
Uribe
,
J. C.
,
2006
, “
An Industrial Approach to Near-Wall Turbulence Modelling for Unstructured Finite Volume Methods
,”
Ph.D. thesis
, The University of Manchester, Manchester, UK.
28.
Billard
,
F.
,
2012
, “
Development of a Robust Elliptic-Blending Turbulence Model for Near-Wall, Separated and Buoyancy Flows
,”
Ph.D. thesis
, School of Mechanical and Civil Engineering, University of Manchester, Manchester, UK.
29.
Blay
,
D.
,
Mergui
,
S.
, and
Niculae
,
C.
,
1992
, “
Confined Turbulent Mixed Convection in the Presence of a Horizontal Buoyant Wall Jet
,”
Fundamentals of Mixed Convection
, Vol.
HTD-213
,
ASME
,
New York
, pp.
65
72
.
30.
Zhang
,
W.
, and
Chen
,
Q.
,
2000
, “
Large Eddy Simulation of Natural and Mixed Convection Airflow Indoors With Two Simple Filtered Dynamic Subgrid Scale Models
,”
Numer. Heat Transfer, Part A
,
37
(5), pp.
447
463
.
31.
You
,
J.
,
Yoo
,
J. Y.
, and
Choi
,
H.
,
2003
, “
Direct Numerical Simulation of Heated Vertical Air Flows in Fully Developed Turbulent Mixed Convection
,”
Int. J. Heat Mass Transfer
,
46
(
9
), pp.
1613
1627
.
32.
Jackson
,
J. D.
,
Cotton
,
M. A.
, and
Axcell
,
B. P.
,
1989
, “
Studies of Mixed Convection in Vertical Tubes
,”
Int. J. Heat Fluid Flow
,
10
(
1
), pp.
2
15
.
33.
Keshmiri
,
A.
,
Cotton
,
M. A.
,
Addad
,
Y.
, and
Laurence
,
D.
,
2012
, “
Turbulence Models and Large Eddy Simulations Applied to Ascending Mixed Convection Flows
,”
Flow, Turbul. Combust.
,
89
(
3
), pp.
407
434
.
34.
Kim
,
W. S.
,
He
,
S.
, and
Jackson
,
J. D.
,
2008
, “
Assessment by Comparison With DNS Data of Turbulence Models Used in Simulations of Mixed Convection
,”
Int. J. Heat Mass Transfer
,
51
, pp.
1293
1312
.
35.
Behnia
,
M.
,
Parneix
,
S.
, and
Durbin
,
P. A.
,
1998
, “
Prediction of Heat Transfer in an Axisymmetric Turbulent Jet Impinging on a Flat Plate
,”
Int. J. Heat Mass Transfer
,
41
(
12
), pp.
1845
1855
.
36.
Kasagi
,
N.
, and
Nishimura
,
M.
,
1997
, “
Direct Numerical Simulation of Combined Forced and Natural Turbulent Convection in a Vertical Plate Channel
,”
Int. J. Heat Fluid Flow
,
18
(
1
), pp.
88
99
.
You do not currently have access to this content.