In the present study, analysis of fluid flow and heat transfer in the entrance and periodically fully developed regions of a channel with porous baffles is numerically studied. The Navier–Stokes and Brinkman–Forchheimer equations are used to model the fluid flow in the open and porous regions. The flow is assumed to be laminar. A finite-volume based method in conjunction with the SIMPLE algorithm is used to solve the equations. The local thermal equilibrium model is adopted in the energy equation to evaluate the solid and fluid temperatures. The effects of parameters such as baffle height, baffle spacing, Reynolds number, and thermal conductivity ratio between the porous baffles and the fluid on the flow field and local heat transfer rate are studied at relatively low and high values of Darcy number. Results show that local heat transfer coefficient significantly depends on the formation and variation of the recirculation caused by the porous baffles, such that, in the cases where use of porous baffles leads to recirculation zone, the local Nusselt number in the entrance region would be less than that of the fully developed region. It is also shown that heat transfer performance ratio is significantly improved for high Prandtl number fluids.

References

1.
Wang
,
G.
,
Stone
,
K.
, and
Vanka
,
S. P.
,
1996
, “
Unsteady Heat Transfer in Baffled Channels
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
585
591
.
2.
Sung
,
H. J.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
,
1995
, “
Forced Convection From an Isolated Heat Source in a Channel With Porous Medium
,”
Int. J. Heat Fluid Flow
,
16
(
6
), pp.
527
535
.
3.
Ould-Amer
,
Y.
,
Chikh
,
S.
,
Bouhadef
,
K.
, and
Lauriat
,
G.
,
1998
, “
Forced Convection Cooling Enhancement by Use of Porous Materials
,”
Int. J. Heat Fluid Flow
,
19
(
3
), pp.
251
258
.
4.
Pavel
,
B. I.
, and
Mohamad
,
A. A.
,
2004
, “
An Experimental and Numerical Study on Heat Transfer Enhancement for Gas Heat Exchangers Fitted With Porous Media
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
4939
4952
.
5.
Fu
,
H. L.
,
Leong
,
K. C.
,
Huang
,
X. Y.
, and
Liu
,
C. Y.
,
2001
, “
An Experimental Study of Heat Transfer of a Porous Channel Subjected to Oscillating Flow
,”
ASME J. Heat Transfer
,
123
(
1
), pp.
162
170
.
6.
Chikh
,
S.
,
Boumedien
,
A.
,
Bouhadef
,
K.
, and
Lauriat
,
G.
,
1995
, “
Analytical Solution of Non-Darcian Forced Convection in an Annular Duct Partially Filled With a Porous Medium
,”
Int. J. Heat Mass Transfer
,
38
(
9
), pp.
1543
1551
.
7.
Huang
,
Z. F.
,
Nakayama
,
A.
,
Yang
,
K.
,
Yang
,
C.
, and
Liu
,
W.
,
2010
, “
Enhancing Heat Transfer in the Core Flow by Using Porous Medium Insert in a Tube
,”
Int. J. Heat Mass Transfer
,
53
(5–6), pp.
1164
1174
.
8.
Maerefat
,
M.
,
Mahmoudi
,
S. Y.
, and
Mazaheri
,
K.
,
2011
, “
Numerical Simulation of Forced Convection Enhancement in a Pipe by Porous Inserts
,”
ASME J. Heat Transfer Eng.
,
32
(
1
), pp.
45
56
.
9.
Huang
,
P. C.
, and
Vafai
,
K.
,
1993
, “
Flow and Heat Transfer Control Over an External Surface Using a Porous Block Array Arrangement
,”
Int. J. Heat Mass Transfer
,
36
(
16
), pp.
4019
4032
.
10.
Huang
,
P. C.
, and
Vafai
,
K.
,
1994
, “
Analysis of Forced Convection Enhancements in a Channel Using Porous Baffles
,”
J. Thermophys. Heat Transfer
,
8
(
3
), pp.
563
573
.
11.
Yang
,
Y. T.
, and
Hwang
,
C. Z.
,
2003
, “
Calculation of Turbulent Flow and Heat Transfer in a Porous Baffled Channel
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
771
780
.
12.
Ko
,
K. H.
, and
Anand
,
N. K.
,
2003
, “
Use of Porous Baffles to Enhance Heat Transfer in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
46
(
22
), pp.
4191
4199
.
13.
Yang
,
J.
,
Zeng
,
M.
, and
Wang
,
Q.
,
2010
, “
Forced Convection Heat Transfer Enhancement by Porous Pin Fins in Rectangular Channels
,”
ASME J. Heat Transfer
,
132
(
5
), p.
051702
.
14.
Santos
,
N. B.
, and
de Lemos
,
M. J. S.
,
2006
, “
Flow and Heat Transfer in a Parallel-Plate Channel With Porous and Solid Baffles
,”
Numer. Heat Transfer, Part A
,
49
(
5
), pp.
471
494
.
15.
Miranda
,
B. M. D. S.
, and
Anand
,
N. K.
,
2004
, “
Convective Heat Transfer in a Channel With Porous Baffles
,”
Numer. Heat Transfer, Part A
,
46
(
5
), pp.
425
452
.
16.
Targui
,
N.
, and
Kahalerras
,
H.
,
2008
, “
Analysis of Fluid Flow and Heat Transfer in a Double Pipe Heat Exchanger With Porous Structures
,”
Energy Convers. Manage.
,
49
(
11
), pp.
3217
3229
.
17.
Li
,
H. Y.
,
Leong
,
K. C.
,
Jin
,
L. W.
, and
Chai
,
J. C.
,
2010
, “
Analysis of Fluid Flow and Heat Transfer in a Channel With Staggered Porous Blocks
,”
Int. J. Therm. Sci.
,
49
(
6
), pp.
950
962
.
18.
Mousavi
,
S. S.
, and
Hooman
,
K.
,
2006
, “
Heat and Fluid Flow in Entrance Region of a Channel With Staggered Baffles
,”
Energy Convers. Manage.
,
47
(15–16), pp.
2011
2019
.
19.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
, 2nd ed.,
Springer-Verlag
,
New York
.
20.
Vafai
,
K.
, and
Tien
,
C. L.
,
1981
, “
Boundary and Inertial Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
24
(2), pp.
195
203
.
21.
Alazmi
,
B.
, and
Vafai
,
K.
,
2000
, “
Analysis of Variants Within the Porous Media Transport Models
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
303
326
.
22.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
23.
Alazmi
,
B.
, and
Vafai
,
K.
,
2004
, “
Analysis of Variable Porosity, Thermal Dispersion, and Local Thermal Non-Equilibrium on Free Surface Flows Through Porous Media
,”
ASME J. Heat Transfer
,
126
(
3
), pp.
389
399
.
24.
Kim
,
S. J.
, and
Jang
,
S. P.
,
2002
, “
Effect of the Darcy Number, the Prandtl Number and the Reynolds Number on Local Thermal Non-Equilibrium
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
3885
3896
.
25.
Bejan
,
A.
,
2004
,
Convection Heat Transfer
, 3rd ed.,
Wiley
,
Hoboken, NJ
.
26.
Yu
,
B.
,
Tao
,
W.
, and
Wei
,
J.
,
2002
, “
Discussion on Momentum Interpolation Method for Collocated Grids of Incompressible Flow
,”
Numer. Heat Transfer, Part B
,
42
(
2
), pp.
141
166
.
27.
Kaviany
,
M.
,
1985
, “
Laminar Flow Through a Porous Channel Bounded by Isothermal Parallel Plates
,”
Int. J. Heat Mass Transfer
,
28
(
4
), pp.
851
858
.
You do not currently have access to this content.