A Monte Carlo rejection technique for numerically solving the complete, nonlinear phonon Boltzmann transport equation (BTE) is presented in this work, including three particles interactions. The technique has been developed to explicitly model population-dependent scattering within a full-band cellular Monte Carlo (CMC) framework, to simulate phonon transport in semiconductors, while ensuring conservation of energy and momentum for each scattering event within gridding error. The scattering algorithm directly solves the many-body problem accounting for the instantaneous distribution of the phonons. Our general approach is capable of simulating any nonequilibrium phase space distribution of phonons using the full phonon dispersion without the need of approximations used in previous Monte Carlo simulations. In particular, no assumptions are made on the dominant modes responsible for anharmonic decay, while normal and umklapp scattering are treated on the same footing. In this work, we discuss details of the algorithmic implementation of both the three-particle scattering for the treatment of the anharmonic interactions between phonons, as well as treating isotope and impurity scattering within the same framework. The simulation code was validated by comparison with both analytical and experimental results; in particular, the simulation results show close agreement with a wide range of experimental data such as thermal conductivity as function of the isotopic composition, the temperature, and the thin-film thickness.

References

1.
Srivastava
,
G. P.
,
1990
,
The Physics of Phonons
,
Taylor & Francis Group
,
New York
.
2.
Ashcroft
,
N.
, and
Mermin
,
N.
,
1981
,
Solid State Physics
,
Holt-Saunders International Editions
,
Tokyo, Japan
.
3.
Pascual-Gutierrez
,
J. A.
,
Murthy
,
J. Y.
, and
Viskanta
,
R.
,
2009
, “
Thermal Conductivity and Phonon Transport Properties of Silicon Using Perturbation Theory and the Environment-Dependent Interatomic Potential
,”
J. Appl. Phys.
,
106
(
6
), p.
063532
.
4.
Broido
,
D. A.
,
Malorny
,
M.
,
Birner
,
G.
,
Mingo
,
N.
, and
Stewart
,
D. A.
,
2007
, “
Intrinsic Lattice Thermal Conductivity of Semiconductors From First Principles
,”
Appl. Phys. Lett.
,
91
(
23
), p.
231922
.
5.
Ward
,
A.
,
Broido
,
D. A.
,
Stewart
,
D. A.
, and
Deinzer
,
G.
,
2009
, “
Ab Initio Theory of the Lattice Thermal Conductivity in Diamond
,”
Phys. Rev. B
,
80
(
12
), p.
125203
.
6.
Lindsay
,
L.
,
Broido
,
D. A.
, and
Mingo
,
N.
,
2010
, “
Flexural Phonons and Thermal Transport in Graphene
,”
Phys. Rev. B
,
82
(
11
), p.
115427
.
7.
Klitsner
,
T.
,
VanCleve
,
J.
,
Fischer
,
H. E.
, and
Pohl
,
R.
,
1988
, “
Phonon Radiative Heat Transfer and Surface Scattering
,”
Phys. Rev. B
,
38
(
11
), pp.
7576
7594
.
8.
Narumanchi
,
S.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
,
2006
, “
Boltzmann Transport Equation-Based Thermal Modeling Approaches for Hotspots in Microelectronics
,”
Heat Mass Transfer
,
42
(
6
), pp.
478
491
.
9.
Peterson
,
R. B.
,
1994
, “
Direct Simulation of Phonon-Mediated Heat Transfer in a Debye Crystal
,”
ASME J. Heat Transfer
,
116
(
4
), pp.
815
822
.
10.
Mazumder
,
S.
, and
Majumdar
,
A.
,
2001
, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Transfer
,
123
(
4
), pp.
749
759
.
11.
Chen
,
Y.
,
Li
,
D.
,
Lukes
,
J. R.
, and
Majumdar
,
A.
,
2005
, “
Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity
,”
ASME J. Heat Transfer
,
127
(
10
), pp.
1129
1137
.
12.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
, 1st ed.,
Addison-Wesley Longman
,
Boston, MA
.
13.
Lacroix
,
D.
,
Joulain
,
K.
, and
Lemonnier
,
D.
,
2005
, “
Monte Carlo Transient Phonon Transport in Silicon and Germanium at Nanoscales
,”
Phys. Rev. B
,
72
(
6
), p.
064305
.
14.
Péraud
,
J. M.
, and
Hadjiconstantinou
,
N. G.
,
2011
, “
Efficient Simulation of Multidimensional Phonon Transport Using Energy-Based Variance-Reduced Monte Carlo Formulations
,”
Phys. Rev. B
,
84
(
20
), p.
205331
.
15.
Ramayya
,
E.
,
Maurer
,
L.
,
Davoody
,
A.
, and
Knezevic
,
I.
,
2012
, “
Thermoelectric Properties of Ultrathin Silicon Nanowires
,”
Phys. Rev. B
,
86
(
11
), p.
115328
.
16.
Mei
,
S.
,
Maurer
,
L.
,
Aksamija
,
Z.
, and
Knezevic
,
I.
,
2014
, “
Full-Dispersion Monte Carlo Simulation of Phonon Transport in Micron-Sized Graphene Nanoribbons
,”
J. Appl. Phys.
,
116
(
16
), p.
164307
.
17.
Mittal
,
A.
, and
Mazumder
,
S.
,
2010
, “
Monte Carlo Study of Phonon Heat Conduction in Silicon Thin Films Including Contributions of Optical Phonons
,”
ASME J. Heat Transfer
,
132
(
5
), p.
052402
.
18.
Kittel
,
C.
, and
McEuen
,
P.
,
1976
,
Introduction to Solid State Physics
,
Wiley
,
New York
.
19.
Baker
,
L.
, and
Hadjiconstantinou
,
N. G.
,
2005
, “
Variance Reduction for Monte Carlo Solutions of the Boltzmann Equation
,”
Phys. Fluids
,
17
(
5
), p.
051703
.
20.
Sheng
,
P.
, and
van Tiggelen
,
B.
,
2007
, “
Introduction to Wave Scattering, Localization and Mesoscopic Phenomena
,” 2nd ed.,
Waves Random Complex Media
,
17
(
2
), pp.
235
237
.
21.
McGaughey
,
A. J. H.
, and
Jain
,
A.
,
2012
, “
Nanostructure Thermal Conductivity Prediction by Monte Carlo Sampling of Phonon Free Paths
,”
Appl. Phys. Lett.
,
100
(
6
), p.
061911
.
22.
Kukita
,
K.
, and
Kamakura
,
Y.
,
2013
, “
Monte Carlo Simulation of Phonon Transport in Silicon Including a Realistic Dispersion Relation
,”
J. Appl. Phys.
,
114
(
15
), p.
154312
.
23.
Landon
,
C. D.
, and
Hadjiconstantinou
,
N. G.
,
2014
, “
Deviational Simulation of Phonon Transport in Graphene Ribbons With Ab Initio Scattering
,”
J. Appl. Phys.
,
116
(
16
), p.
163502
.
24.
Mohamed
,
M.
,
Aksamija
,
Z.
,
Vitale
,
W.
,
Hassan
,
F.
,
Park
,
K. H.
, and
Ravaioli
,
U.
,
2014
, “
A Conjoined Electron and Thermal Transport Study of Thermal Degradation Induced During Normal Operation of Multigate Transistors
,”
IEEE Trans. Electron Devices
,
61
(
4
), pp.
976
983
.
25.
Saraniti
,
M.
, and
Goodnick
,
S. M.
,
2000
, “
Hybrid Fullband Cellular Automaton/Monte Carlo Approach for Fast Simulation of Charge Transport in Semiconductors
,”
IEEE Trans. Electron Devices
,
47
(
10
), pp.
1909
1916
.
26.
Jacoboni
,
C.
, and
Reggiani
,
L.
,
1983
, “
The Monte Carlo Method for the Solution of Charge Transport in Semiconductors With Applications to Covalent Materials
,”
Rev. Mod. Phys.
,
55
(
3
), pp.
645
705
.
27.
Joshi
,
A.
, and
Majumdar
,
A.
,
1993
, “
Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films
,”
J. Appl. Phys.
,
74
(
1
), pp.
31
39
.
28.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
,
1994
, “
Finite Volume Method for Radiation Heat Transfer
,”
J. Thermophys. Heat Transfer
,
8
(
3
), pp.
419
425
.
29.
Chen
,
G.
,
2002
, “
Ballistic-Diffusive Equations for Transient Heat Conduction From Nano to Macroscales
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
320
328
.
30.
Sinha
,
S.
,
Pop
,
E.
,
Dutton
,
R.
, and
Goodson
,
K.
,
2006
, “
Non-Equilibrium Phonon Distributions in Sub-100 nm Silicon Transistors
,”
ASME J. Heat Transfer
,
128
(
7
), pp.
638
647
.
31.
Grasser
,
T.
,
Tang
,
T.-W.
,
Kosina
,
H.
, and
Selberherr
,
S.
,
2003
, “
A Review of Hydrodynamic and Energy-Transport Models for Semiconductor Device Simulation
,”
Proc. IEEE
,
91
(
2
), pp.
251
274
.
32.
Fischetti
,
M. V.
, and
Laux
,
S. E.
,
1988
, “
Monte Carlo Analysis of Electron Transport in Small Semiconductor Devices Including Band-Structure and Space-Charge Effects
,”
Phys. Rev. B
,
38
(
14
), pp.
9721
9745
.
33.
Klemens
,
P.
,
1958
, “
Thermal Conductivity and Lattice Vibrational Modes
,”
Solid State Phys.
,
7
, pp.
1
98
.
34.
Bose
,
S.
,
1924
, “
Plancks Gesetz und Lichtquantenhypothese
,”
Z. Phys.
,
26
(
1
), pp.
178
181
.
35.
Klemens
,
P.
,
1961
, “
Anharmonic Attenuation of Localized Lattice Vibrations
,”
Phys. Rev.
,
122
(
2
), pp.
443
445
.
36.
Grüneisen
,
E.
,
1912
, “
Theorie Des Festen Zustandes Einatomiger Elemente
,”
Ann. Phys.
,
344
(
12
), pp.
257
306
.
37.
Klemens
,
P.
,
1966
, “
Anharmonic Decay of Optical Phonons
,”
Phys. Rev.
,
148
(
2
), pp.
845
848
.
38.
Ridley
,
B.
, and
Gupta
,
R.
,
1991
, “
Nonelectronic Scattering of Longitudinal-Optical Phonons in Bulk Polar Semiconductors
,”
Phys. Rev. B
,
43
(
6
), pp.
4939
4944
.
39.
Ferry
,
D.
,
1974
, “
Decay of Polar-Optical Phonons in Semiconductors
,”
Phys. Rev. B
,
9
(
10
), pp.
4277
4280
.
40.
Inyushkin
,
A.
,
Taldenkov
,
A.
,
Gibin
,
A.
,
Gusev
,
A.
, and
Pohl
,
H.
,
2004
, “
On the Isotope Effect in Thermal Conductivity of Silicon
,”
Phys. Status Solidi (C)
,
1
(
11
), pp.
2995
2998
.
41.
Burzo
,
M. G.
,
Komarov
,
P. L.
, and
Raad
,
P.
,
2004
, “
Non-Contact Thermal Conductivity Measurements of Gold Covered Natural and Isotopically-Pure Silicon and Their Respective Oxides
,”
5th International Conference on Thermal, Mechanical and Thermo-Mechanical Simulation and Experiments in Micro-Electronics and Micro-Systems
, Brussels, Belgium, pp.
269
276
.
42.
Klemens
,
P.
,
1955
, “
The Scattering of Low-Frequency Lattice Waves by Static Imperfections
,”
Proc. Phys. Soc., Sect. A
,
68
(
12
), pp.
1113
1128
.
43.
Dirac
,
P. A. M.
,
1927
, “
The Quantum Theory of the Emission and Absorption of Radiation
,”
Proc. R. Soc. London, Ser. A
,
114
(
767
), pp.
243
265
.
44.
McQuarrie
,
D.
,
2000
,
Statistical Mechanics
,
University Science Books
,
Sausalito, CA
.
45.
Kunc
,
K.
, and
Nielsen
,
O. H.
,
1979
, “
Lattice Dynamics of Zincblende Structure Compounds. II. Shell Model
,”
Comput. Phys. Commun.
,
17
(
4
), pp.
413
422
.
46.
Goodnick
,
S.
, and
Lugli
,
P.
,
1988
, “
Effect of Electron–Electron Scattering on Nonequilibrium Transport in Quantum-Well Systems
,”
Phys. Rev. B
,
37
(
5
), pp.
2578
2588
.
47.
Nussbaum
,
A.
,
1976
,
Contemporary Optics for Scientists and Engineers
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
48.
Fuchs
,
K.
,
1938
, “
The Conductivity of Thin Metallic Films According to the Electron Theory of Metals
,”
Math. Proc. Cambridge Philos. Soc.
,
34
(
1
), pp.
100
108
.
49.
Sondheimer
,
E. H.
,
1952
, “
The Mean Free Path of Electrons in Metals
,”
Adv. Phys.
,
1
(
1
), pp.
1
42
.
50.
González
,
T.
, and
Pardo
,
D.
,
1996
, “
Physical Models of Ohmic Contact for Monte Carlo Device Simulation
,”
Solid-State Electron.
,
39
(
4
), pp.
555
562
.
51.
Lin
,
J.
,
1991
, “
Divergence Measures Based on the Shannon Entropy
,”
IEEE Trans. Inf. Theory
,
37
(
1
), pp.
145
151
.
52.
Henry
,
A. S.
, and
Chen
,
G.
,
2008
, “
Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
,”
J. Comput. Theor. Nanosci.
,
5
(
2
), pp.
141
152
.
53.
Ward
,
A.
, and
Broido
,
D. A.
,
2010
, “
Intrinsic Phonon Relaxation Times From First-Principles Studies of the Thermal Conductivities of Si and Ge
,”
Phys. Rev. B
,
81
(
8
), p.
085205
.
54.
Fourier
,
J. B. J.
,
1878
,
The Analytical Theory of Heat
, A. Freeman, trans.,
Cambridge University Press
,
Cambridge, UK
.
55.
Crank
,
J.
,
1975
,
The Mathematics of Diffusion
, 2nd ed.,
Clarendon Press
,
Oxford, UK
.
56.
Shanks
,
H. R.
,
Maycock
,
P. D.
,
Sidles
,
P. H.
, and
Danielson
,
G. C.
,
1963
, “
Thermal Conductivity of Silicon From 300 to 1400 °K
,”
Phys. Rev.
,
130
(
5
), pp.
1743
1748
.
57.
Ziman
,
J.
,
1964
,
Principles of the Theory of Solids
,
Cambridge University Press
,
London
.
58.
Asheghi
,
M.
,
Touzelbaev
,
M. N.
,
Goodson
,
K. E.
,
Leung
,
Y. K.
, and
Wong
,
S. S.
,
1998
, “
Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
30
36
.
59.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
, “
Phonon Scattering in Silicon Films With Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
(
20
), pp.
3005
3007
.
60.
Liu
,
W.
, and
Asheghi
,
M.
,
2005
, “
Thermal Conduction in Ultrathin Pure and Doped Single-Crystal Silicon Layers at High Temperatures
,”
J. Appl. Phys.
,
98
(
12
), p.
123523
.
61.
Ju
,
Y.
,
2005
, “
Phonon Heat Transport in Silicon Nanostructures
,”
Appl. Phys. Lett.
,
87
(
15
), p.
153106
.
You do not currently have access to this content.