Jet impingement cooling is widely used in many industrial applications due to its high heat transfer capability and is an option for advanced high power density systems. Jet impingement cooling with supercritical pressure fluids could have much larger heat transfer rates combining with the large fluid specific heat near the pseudocritical point. However, the knowledge of its flow and heat transfer characteristics is limited. In this study, the flow and the local and average heat transfer characteristics of jet impingement cooling with supercritical pressure fluids were studied experimentally with carbon dioxide first. An integrated thermal sensor chip that provided heating and temperature measurements was manufactured using micro-electro-mechanical systems (MEMS) techniques with a low thermal conductivity substrate as the impingement cooled plate. The experiment system pressure was 7.85 MPa, which is higher than the critical pressure of carbon dioxide of 7.38 MPa. The mass flow rate ranged from 8.34 to 22.36 kg/h and the Reynolds number ranged from 19,000 to 68,000. The heat flux ranged from 0.02 to 0.22 MW/m2. The nozzle inlet temperature ranged from lower to higher than the pseudocritical temperature. Dramatic variations of the density at supercritical pressures near the heating chip were observed with increasing heat flux in the strong reflection and refraction of the backlight that disappeared at inlet temperatures higher than the pseudocritical temperature. The local heat transfer coefficient near the stagnation point increased with increasing heat flux while those far from the stagnation point increased to a maximum with increasing heat flux and then decreased due to the nonuniformity of jet impingement cooling. The heat transfer is higher at inlet temperatures lower than the pseudocritical temperature and the surface temperature is slightly higher than the pseudocritical temperature due to the dramatic changes in the fluid thermo-physical properties at supercritical pressures.

References

1.
Cornaro
,
C.
,
Fleischer
,
A. S.
,
Rounds
,
M.
, and
Goldstein
,
R. J.
,
2001
, “
Jet Impingement Cooling of a Convex Semi-Cylindrical Surface
,”
Int. J. Therm. Sci.
,
40
(
10
), pp.
890
898
.
2.
Behnia
,
M.
,
Parneix
,
S.
, and
Durbin
,
P. A.
,
1998
, “
Prediction of Heat Transfer in an Axisymmetric Turbulent Jet Impinging on a Flat Plate
,”
Int. J. Heat Mass Transfer
,
41
(
12
), pp.
1845
1855
.
3.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2007
, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.
4.
NIST Standard Reference Database 23
,
2010
, “
NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures REFROP, Version 9.0
,” National Institute of Standards and Technology, Gaithersburg, MD.
5.
Jiang
,
P. X.
,
Zhao
,
C. R.
, and
Liu
,
B.
,
2012
, “
Flow and Heat Transfer Characteristics of R22 and Ethanol at Supercritical Pressures
,”
J. Supercrit. Fluids
,
70
(
10
), pp.
75
89
.
6.
Licht
,
J.
,
Anderson
,
M.
, and
Corradini
,
M.
,
2008
, “
Heat Transfer to Water at Supercritical Pressures in a Circular and Square Annular Flow Geometry
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
156
166
.
7.
Jiang
,
P.-X.
,
Zhang
,
Y.
,
Zhao
,
C.-R.
, and
Shi
,
R.-F.
,
2008
, “
Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Mini Tube at Relatively Low Reynolds Numbers
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1628
1637
.
8.
Jiang
,
P. X.
,
Liu
,
B.
,
Zhao
,
C. R.
, and
Luo
,
F.
,
2013
, “
Convection Heat Transfer of Supercritical Pressure Carbon Dioxide in a Vertical Micro Tube From Transition to Turbulent Flow Regime
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
741
749
.
9.
Jiang
,
P.-X.
,
Zhang
,
Y.
, and
Shi
,
R.-F.
,
2008
, “
Experimental and Numerical Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Mini-Tube
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
3052
3056
.
10.
Jiang
,
P. X.
,
Xu
,
Y. J.
,
Lv
,
J.
,
Shi
,
R. F.
,
He
,
S.
, and
Jackson
,
J. D.
,
2004
, “
Experimental Investigation of Convection Heat Transfer of CO2 at Super-Critical Pressures in Vertical Mini-Tubes and in Porous Media
,”
Appl. Therm. Eng.
,
24
(
8–9
), pp.
1255
1270
.
11.
Wang
,
N.
,
Zhou
,
J.
,
Pan
,
Y.
, and
Wang
,
H.
,
2014
, “
Experimental Investigation on Flow Patterns of RP-3 Kerosene Under Sub-Critical and Supercritical Pressures
,”
Acta Astronaut.
,
94
(
2
), pp.
834
842
.
12.
Liu
,
B.
,
Zhu
,
Y.
,
Yan
,
J. J.
,
Lei
,
Y.
,
Zhang
,
B.
, and
Jiang
,
P. X.
,
2015
, “
Experimental Investigation of Convection Heat Transfer of n-Decane at Supercritical Pressures in Small Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
91
, pp.
734
746
.
13.
Huang
,
Z.
,
Zhu
,
Y. H.
,
Jiang
,
P. X.
, and
Xiong
,
Y. B.
,
2015
, “
Investigation of a Porous Transpiration-Cooled Strut Injector
,”
J. Propul. Power
,
31
(
1
), pp.
278
285
.
14.
Bao
,
W.
,
Qin
,
J.
,
Zhou
,
W. X.
, and
Yu
,
D. R.
,
2010
, “
Effect of Cooling Channel Geometry on Re-Cooled Cycle Performance for Hydrogen Fueled Scramjet
,”
Int. J. Hydrogen Energy
,
35
(
13
), pp.
7002
7011
.
15.
Garimella
,
S. V.
, and
Rice
,
R. A.
,
1995
, “
Confined and Submerged Liquid Jet Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
117
(
4
), pp.
871
877
.
16.
Lee
,
D. Y.
, and
Vafai
,
K.
,
1999
, “
Comparative Analysis of Jet Impingement and Microchannel Cooling for High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
,
42
(
9
), pp.
1555
1568
.
17.
Yang
,
G.
,
Choi
,
M.
, and
Lee
,
J. S.
,
1999
, “
An Experimental Study of Slot Jet Impingement Cooling on Concave Surface: Effects of Nozzle Configuration and Curvature
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2199
2209
.
18.
Wang
,
E. N.
,
Zhang
,
L.
,
Jiang
,
L.
, and
Koo
,
J. M.
,
2004
, “
Micromachined Jets for Liquid Impingement Cooling of VLSI Chips
,”
J. Microelectromech. Syst.
,
13
(
5
), pp.
833
842
.
19.
Zuckerman
,
N.
, and
Lior
,
N.
,
2005
, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
544
552
.
20.
Liu
,
T.
, and
Sullivan
,
J. P.
,
1996
, “
Heat Transfer and Flow Structures in an Excited Circular Impinging Jet
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3695
3706
.
21.
Lafmajani
,
N. A.
,
Bidhendi
,
M. E.
, and
Ashjaee
,
M.
,
2016
, “
SiO2 Nanofluid Planar Jet Impingement Cooling on a Convex Heated Plate
,”
Heat Mass Transfer
,
52
(
12
), pp.
2735
2746
.
22.
Nayak
,
S. K.
,
Mishra
,
P. C.
, and
Parashar
,
S. K. S.
,
2016
, “
Enhancement of Heat Transfer by Water-Al2O3 and Water-TiO2 Nanofluids Jet Impingement in Cooling Hot Steel Surface
,”
J. Exp. Nanosci.
,
11
(
16
), pp.
1253
1273
.
23.
Ravikumar, S. V.,
Jha
,
J. M.
,
Haldar
,
K.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2015
, “
Surfactant-Based Cu–Water Nanofluid Spray for Heat Transfer Enhancement of High Temperature Steel Surface
,”
ASME J. Heat Transfer
,
137
(
5
), p.
051504
.
24.
Gradeck
,
M.
,
Kouachi
,
A.
,
LebouchÉ
,
M.
,
Volle
,
F.
,
Maillet
,
D.
, and
Borean
,
J. L.
,
2009
, “
Boiling Curves in Relation to Quenching of a High Temperature Moving Surface With Liquid Jet Impingement
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1094
1104
.
25.
Robidou
,
H.
,
Auracher
,
H.
,
Gardin
,
P.
, and
Lebouché
,
M.
,
2002
, “
Controlled Cooling of a Hot Plate With a Water Jet
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
123
129
.
26.
Zhou
,
D. W.
, and
Ma
,
C. F.
,
2004
, “
Local Jet Impingement Boiling Heat Transfer With R113
,”
Heat Mass Transfer
,
40
(
6–7
), pp.
539
549
.
27.
Mozumder
,
A. K.
,
Monde
,
M.
,
Woodfield
,
P. L.
, and
Islam
,
M. A.
,
2006
, “
Maximum Heat Flux in Relation to Quenching of a High Temperature Surface With Liquid Jet Impingement
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
2877
2888
.
28.
Colucci
,
D. W.
, and
Viskanta
,
R.
,
1996
, “
Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet
,”
Exp. Therm. Fluid Sci.
,
13
(
1
), pp.
71
80
.
29.
Lytle
,
D.
, and
Webb
,
B. W.
,
1994
, “
Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
.
30.
Joo-Kyun
,
K.
, and
Toshio
,
A.
,
1992
, “
A Numerical Study of Heat Transfer Due to an Axisymmetric Laminar Impinging Jet of Supercritical Carbon Dioxide
,”
Int. J. Heat Mass Transfer
,
35
(
10
), pp.
2515
2526
.
31.
Chen
,
K.
,
Jiang
,
P. X.
,
Chen
,
J. N.
, and
Xu
,
R. N.
,
2017
, “
Numerical Investigation of Jet Impingement Cooling of a Flat Plate With Carbon Dioxide at Supercritical Pressures
,”
Heat Transfer Eng.
, epub.
32.
Rothenfluh
,
T.
,
Schuler
,
M. J.
, and
Rohr
,
P. R. V.
,
2013
, “
Experimental Heat Transfer Study on Impinging, Turbulent, Near-Critical Water Jets Confined by an Annular Wall
,”
J. Supercrit. Fluids
,
77
(
77
), pp.
79
90
.
33.
Patil
,
V. A.
, and
Narayanan
,
V.
,
2005
, “
Application of Heated-Thin-Foil Thermography Technique to External Convective Microscale Flows
,”
Meas. Sci. Technol.
,
16
(
2
), pp.
472
476
.
34.
San
,
J.-Y.
,
Huang
,
C.-H.
, and
Shu
,
M.-H.
,
1997
, “
Impingement Cooling of a Confined Circular Air Jet
,”
Int. J. Heat Mass Transfer
,
40
(
6
), pp.
1355
1364
.
You do not currently have access to this content.