In this work, a novel phenomenological model is proposed to study the liquid-to-solid phase change of eutectic and hypoeutectic alloy compositions. The objective is to enhance the prediction capabilities of the solidification models based on a-priori definition of the solid fraction as a function of the temperature field. However, the use of models defined at the metallurgical level is avoided to minimize the number of material parameters required. This is of great industrial interest because, on the one hand, the classical models are not able to predict recalescence and undercooling phenomena, and, on the other hand, the complexity as well as the experimental campaign necessary to feed most of the microstructure models available in the literature make their calibration difficult and very dependent on the chemical composition and the treatment of the melt. Contrarily, the proposed model allows for an easy calibration by means of few parameters. These parameters can be easily extracted from the temperature curves recorded at the hot spot of the quick cup test, typically used in the differential thermal analysis (DTA) for the quality control of the melt just before pouring. The accuracy of the numerical results is assessed by matching the temperature curves obtained via DTA of eutectic and hypoeutectic alloys. Moreover, the model is validated in more complex casting experiments where the temperature is measured at different thermocouple locations and the metallurgical features such as grain size and nucleation density are obtained from an exhaustive micrography campaign. The remarkable agreement with the experimental evidence validates the predicting capabilities of the proposed model.

References

1.
Morgan
,
K.
,
Lewis
,
R. W.
, and
Zienkiewicz
,
O. C.
,
1978
, “
An Improved Algorithm for Heat Conduction Problems With Phase Change
,”
Int. J. Numer. Methods Eng.
,
12
(
7
), pp.
1191
1195
.
2.
Clyne
,
T. W.
,
1982
, “
The Use of Heat Flow Modeling to Explore Solidification Phenomena
,”
Metall. Trans. B
,
13
(
3
), pp.
471
478
.
3.
Rappaz
,
M.
,
1989
, “
Modelling of Microstructure Formation in Solidification Processes
,”
Int. Mater. Rev.
,
34
(
1
), pp.
93
123
.
4.
Crowley
,
A. B.
,
1978
, “
Numerical Solution of Stefan Problems
,”
Int. J. Heat Mass Transfer
,
21
(
2
), pp.
215
219
.
5.
Desbiolles
,
J.
,
Droux
,
J.
,
Rappaz
,
J.
, and
Rappaz
,
M.
,
1987
, “
Simulation of Solidification of Alloys by the Finite Element Method
,”
Comput. Phys. Rep.
,
6
(
1–6
), pp.
371
383
.
6.
Shamsundar
,
N.
, and
Sparrow
,
E.
,
1975
, “
Analysis of Multidimensional Conduction Phase Change Via the Enthalpy Model
,”
ASME J. Heat Transfer
,
97
(
3
), pp.
333
340
.
7.
Rolph
,
D.
, and
Bathe
,
K.
,
1982
, “
An Efficient Algorithm for Analysis of Nonlinear Heat Transfer With Phase Changes
,”
Int. J. Numer. Methods Eng.
,
18
(
1
), pp.
119
134
.
8.
Chen
,
I. G.
, and
Stefanescu
,
D. M.
,
1984
, “
Computer-Aided Differential Thermal Analysis of Spheroidal and Compacted Graphite Cast Irons
,”
AFS Trans.
,
92
, pp.
947
964
.https://www.researchgate.net/publication/260086364_Computer-Aided_Differential_Thermal_Analysis_of_Spheroidal_and_Compacted_Graphite_Cast_Irons
9.
Oliveira
,
M. J.
,
Malheiros
,
L. F.
, and
Ribeiro
,
C. A.
,
1999
, “
Evaluation of the Heat of Solidification of Cast Irons From Continuous Cooling Curves
,”
J. Mater. Process. Technol.
,
92–93
, pp.
25
30
.
10.
Bower
,
T. F.
,
Brody
,
H. D.
, and
Flemings
,
M. C.
,
1966
, “
Measurements of Solute Redistribution in Dendritic Solidification
,”
Trans. Metall. Soc. AIME
,
236
, pp.
624
633
.http://www.onemine.org/document/abstract.cfm?docid=26043&title=PART-V--Measurements-of-Solute-Redistribution-in-Dendritic-Solidification
11.
Scheil
,
E.
,
1942
, “
Comments on the Layer Crystal Formation
,”
Z. Metallkd.
,
34
, pp.
70
72
.
12.
Oldfield
,
W.
,
1966
, “
A Quantitative Approach to Casting Solidification: Freezing of Cast Iron
,”
ASM Trans.
,
59
, pp.
945
959
.
13.
Stefanescu
,
D. M.
, and
Kanetkar
,
C.
,
1985
,
Computer Simulation of Microstructural Evolution
,
D. J.
,
Srolovitz
, ed.,
The Minerals, Metals & Materials Society
,
Warrendale, PA
, pp.
171
188
.
14.
Stefanescu
,
D. M.
,
Upadhya
,
G.
, and
Bandypadhyay
,
D.
,
1990
, “
Heat Transfer-Solidification Kinetics Modeling of Solidification of Castings
,”
Metall. Trans.
,
21A
(
3
), p.
997
.
15.
Stefanescu
,
D. M.
,
2001
, “
Microstructure Evolution
,”
Modeling for Casting and Solidification Processing
,
K.-O.
Yu
, ed.,
RMI Titanum Company
,
Niles, OH
, pp.
123
187
.
16.
Thevoz
,
P.
,
Desbioles
,
L.
, and
Rappaz
,
M.
,
1989
, “
Modeling of Equiaxed Microstructure Formation in Casting
,”
Metall. Trans. A
,
20
(
2
), pp.
311
322
.
17.
Lesoult
,
G.
,
Castro
,
M.
, and
Lacaze
,
J.
,
1998
, “
Solidification of Spheroidal Graphite Cast Irons—I: Physical Modelling
,”
Acta Mater.
,
46
(
3
), pp.
983
995
.
18.
Lacaze
,
J.
,
Castro
,
M.
, and
Lesoult
,
G.
,
1998
, “
Solidification of Spheroidal Graphite Cast Irons—II: Numerical Simulation
,”
Acta Mater.
,
46
(
3
), pp.
997
1110
.
19.
Lacaze
,
J.
,
1999
, “
Solidification of Spheroidal Graphite Cast Irons—III: Microsegregation Related Effects
,”
Acta Mater.
,
47
(
14
), pp.
3779
3792
.
20.
Wessen
,
M.
, and
Svensson
,
I. L.
,
1996
, “
Modeling of Ferrite Growth in Nodular Cast Iron
,”
Metall. Mater. Trans. A
,
27
(
8
), pp.
2209
2220
.
21.
Perez
,
E.
,
Celentano
,
D.
, and
Oñate
,
E.
,
1996
, “
Simulacion del proceso de solidificacion de la fundicion gris considerando un modelo microestructural
,”
Third Congreso de Metodos Numericos en Ingenieria
, Zaragoza, Spain, June 3–6.
22.
Celentano
,
D. J.
, and
Cruchaga
,
M.
,
1999
, “
A Thermally Coupled Flow Formulation With Microstructural Evolution for Hypoeutectic Cast-Iron Solidification
,”
Metall. Mater. Trans. B
,
30
(
4
), pp.
731
744
.
23.
Celentano
,
D. J.
,
Cruchaga
,
M.
, and
Schulz
,
B.
,
2005
, “
Thermal Microstructural Analysis of Grey Cast Iron Solidification: Simulation and Experimental Validation
,”
Int. J. Cast Met. Res.
,
18
(
4
), pp.
237
247
.
24.
Celentano
,
D. J.
,
Dardati
,
P. M.
,
Godoy
,
L. A.
, and
Boeri
,
R. E.
,
2008
, “
Computational Simulation of Microstructure Evolution During Solidification of Ductile Cast Iron
,”
Int. J. Cast Met. Res.
,
21
(
6
), pp.
416
426
.
25.
Celentano
,
D. J.
,
Dardati
,
P. M.
,
Carazo
,
F. D.
, and
Godoy
,
L. A.
,
2013
, “
Thermomechanical-Microstructural Modelling of Nodular Cast Iron Solidification
,”
Mater. Sci. Technol.
,
29
(
2
), pp.
156
164
.
26.
Cruchaga
,
M.
, and
Celentano
,
D.
,
1998
, “
A Thermally Coupled Flow Formulation With Microstructural Phase-Change Effects
,”
Computational Mechanics
,
S.
Idelsohn
and
E.
Oñate
, eds.,
International Centre for Numerical Methods in Engineering
,
Barcelona, Spain
.
27.
Dardati
,
P. M.
,
Godoy
,
L. A.
,
Cervetto
,
G. A.
, and
Paguaga
,
P.
,
2005
, “
Micromechanics Simulation During the Solidification of SG Cast-Iron
,”
Rev. Int. Métodos Numér. Cálc. Dis. Ing.
,
21
(
4
), pp.
327
344
.
28.
Dardati
,
P. M.
,
Godoy
,
L. A.
, and
Celentano
,
D. J.
,
2006
, “
Microstructural Simulation of Solidification Process of Spheroidal-Graphite Cast Iron
,”
ASME J. Appl. Mech.
,
73
(
6
), pp.
977
983
.
29.
Carazo
,
F.
,
Dardati
,
M.
,
Celentano
,
D.
, and
Godoy
,
L.
,
2012
, “
Thermo-Metallurgical Modeling of Nodular Cast Iron Cooling Process
,”
Metall. Mater. Trans. B
,
43B
(
6
), pp.
1579
1594
.
30.
Wetterfall
,
S.
,
Friedricksson
,
H.
, and
Hillert
,
M.
,
1972
, “
Solidification Process of Nodular Cast Iron
,”
J. Iron Steel Inst.
,
110
, pp.
323
333
.
31.
Gandin
,
C.
, and
Rappaz
,
M.
,
1994
, “
A Coupled Finite Element-Cellular Automaton Model for the Prediction of Dendritic Grain Structures in Solidification Processes
,”
Acta Metall. Mater.
,
42
(
7
), pp.
2233
2246
.
32.
Gandin
,
C.
, and
Rappaz
,
M.
,
1997
, “
A 3D Cellular Automaton Algorithm for the Prediction of Dendritic Grain Growth
,”
Acta Mater.
,
45
(
5
), pp.
2187
2195
.
33.
Charbon
,
C.
, and
Rappaz
,
M.
,
1997
,
Physical Metallurgy of Cast Iron V
,
G.
Lesoult
and
J.
Lacaze
, eds.,
Scitec Publications
,
Uetikon-Zurich, Switzerland
, pp.
453
460
.
34.
Mahin
,
K. W.
,
Hanson
,
K.
, and
Morris
,
J. W.
,
1980
, “
Comparative Analysis of the Cellular and Johnson-Mehl Microstructures Through Computer Simulation
,”
Acta Metall.
,
28
(
4
), pp.
443
453
.
35.
Coussy
,
O.
,
1995
,
Mechanics of Porous Media
,
Wiley
,
New York
.
36.
Cervera
,
M.
,
Oliver
,
J.
, and
Prato
,
T.
,
1999
, “
Thermo-Chemo-Mechanical Model for Concrete—I: Hydration and Aging
,”
J. Eng. Mech.
,
125
(
9
), pp.
1018
1027
.
37.
Dantzig
,
J. A.
, and
Rappaz
,
M.
,
2016
,
Solidification
, 2nd ed.,
EPFL Press
,
Lausanne, Switzerland
.
38.
Cervera
,
M.
,
Agelet de Saracibar
,
C.
, and
Chiumenti
,
M.
,
1999
, “
Thermo-Mechanical Analysis of Industrial Solidification Processes
,”
Int. J. Numer. Methods Eng.
,
46
(
9
), pp.
1575
1591
.
39.
Agelet de Saracibar
,
C.
,
Cervera
,
M.
, and
Chiumenti
,
M.
,
1999
, “
On the Formulation of Coupled Thermoplastic Problems With Phase-Change
,”
Int. J. Plasticity
,
15
(
1
), pp.
1
34
.
40.
Agelet de Saracibar
,
C.
,
Cervera
,
M.
, and
Chiumenti
,
M.
,
2001
, “
On the Constitutive Modeling of Coupled Thermomechanical Phase-Change Problems
,”
Int. J. Plasticity
,
17
(
12
), pp.
1565
1622
.
41.
Agelet de Saracibar
,
C.
,
Chiumenti
,
M.
, and
Cervera
,
M.
,
2006
, “
Current Developments on the Coupled Thermomechanical Computational Modeling of Metal Casting Processes
,”
Int. J. Comp. Methods Mater. Sci.
,
6
(
1–2
), pp.
1
11
.
42.
Chiumenti
,
M.
,
Agelet de Saracibar
,
C.
, and
Cervera
,
M.
,
2008
, “
On the Numerical Modelling of the Thermo-Mechanical Contact for Metal Casting Analysis
,”
ASME J. Heat Transfer
,
130
(
6
), p. 061301.
43.
Boeri
,
R.
,
1989
, “
The Solidification of Ductile Cast Iron
,”
Ph.D. thesis
, University of British Columbia, Vancouver, BC, Canada.https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0078465
44.
Avrami
,
M.
,
1939
, “
Kinetics of Phase Change—I: General Theory
,”
J. Chem. Phys.
,
7
(
12
), pp.
1103
1112
.
45.
Avrami
,
M.
,
1940
, “
Kinetics of Phase Change—II: Transformation-Time Relations for Random Distribution of Nuclei
,”
J. Chem. Phys.
,
8
(
2
), pp.
212
224
.
46.
Avrami
,
M.
,
1941
, “
Kinetics of Phase Change—III: Granulation, Phase Change, and Microstructure
,”
J. Chem. Phys.
,
9
(
2
), pp.
177
184
.
47.
Stefanescu
,
D. M.
,
1996
, “
Methodologies for Modeling of Solidification Microstructure and Their Capabilities
,”
ISIJ Int.
,
35
(
6
), pp.
637
650
.
48.
Rivera
,
G. L.
,
Boeri
,
R. E.
, and
Sikora
,
J. A.
,
2004
, “
Solidification of Gray Cast Iron
,”
Scr. Mater.
,
50
(
3
), pp.
331
335
.
49.
Cervera
,
M.
,
Agelet de Saracibar
,
C.
, and
Chiumenti
,
M.
,
2002
, “
COMET: Coupled Mechanical and Thermal Analysis
,” Data Input Manual, Version 5.0, International Centre for Numerical Methods in Engineering (CIMNE), Barcelona, Spain, Technical Report No.
IT-308
.http://www.cimne.com/comet/cvdata/cntr1/dtos/img/mdia/COMET_Data_Input_manual.pdf
50.
Heroeus Electro-Nite, 2018,
Thermal Analysis of Cast Iron
,
Heraeus Electro-Nite International N.V
, Houthalen, Belgium.
51.
ASM,
1988
,
ASM Metals Handbook: Casting
, 9th ed., Vol.
15
,
ASM International, Materials Park
,
OH
.
52.
Salsi
,
E.
,
Squatrito
,
R.
,
Todaro
,
I.
, and
Tomesani
,
L.
,
2014
, “
Process Modeling and Microstructure Prediction Validation of Sand Ductile Iron Castings, Advanced Sustainable Foundry
,”
71st World Foundry Congress
, Bilbao, Spain, May 19–21, pp. 1536–1543.
53.
Ceschini
,
L.
,
Morri
,
A.
,
Morri
,
A.
,
Salsi
,
E.
,
Squatrito
,
R.
,
Todaro
,
I.
, and
Tomesani
,
L.
,
2015
, “
Microstructure and Mechanical Properties of Heavy Section Ductile Iron Castings: Experimental and Numerical Evaluation of Effects of Cooling Rates
,”
Int. J. Cast Met. Res.
,
28
(
6
), pp.
365
374
.
You do not currently have access to this content.