In this paper, effect of Joule heating (JH), viscous dissipations (VD), and super hydrophobic surfaces on heat transfer of water–Al2O3 and water–CuO nanofluids in a microchannel has been investigated using lattice Boltzmann method (LBM). The microchannel is under a uniform and transverse magnetic field. The lower wall of the microchannel is insulated and a uniform heat flux has been applied to the upper wall. Results are generated at constant Reynolds number of 150, volume fraction of 2%, and a diameter of 25 nm with variable Hartmann numbers ranging from 0 to 20 and nondimensional slip coefficients from 0 to 0.05. The results of the developed code are in good agreement with other analytical, numerical, and experimental reports. Moreover, the results show that in such case, ignoring the JH and VD leads to a significant error in the prediction of Nusselt number up to 62% and 56%, respectively, for water–Al2O3 and water–CuO nanofluids. It has also been shown that using a super hydrophobic surface with a slip coefficient of 0.05 leads to a significant reduction in VD; however, it increases the effect of JH. On the other hand, it is found that, despite JH and viscous dissipation effects, using super hydrophobic surfaces (up to a slip coefficient of 0.05) leads to an increase in Nusselt number and decrease in shear stress for all the studied Hartmann numbers. Finally, it has been concluded that super hydrophobic surfaces can be used as a passive tool to enhance the heat transfer rate and simultaneously decrease the pumping power demand.

References

1.
Hajati
,
A.
, and
Kim
,
S.-G.
,
2011
, “
Ultra-Wide Bandwidth Piezoelectric Energy Harvesting
,”
Appl. Phys. Lett.
,
99
(
8
), p.
083105
.
2.
Acar
,
C.
, and
Shkel
,
A.
,
2008
,
MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness
,
Springer Science & Business Media
, New York.
3.
Sheikholeslami
,
M.
, and
Rokni
,
H. B.
,
2017
, “
Simulation of Nanofluid Heat Transfer in Presence of Magnetic Field: A Review
,”
Int. J. Heat Mass Transfer
,
115
(
Part B
), pp.
1203
1233
.
4.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.
5.
Tullius
,
J. F.
,
Vajtai
,
R.
, and
Bayazitoglu
,
Y.
,
2011
, “
A Review of Cooling in Microchannels
,”
Heat Transfer Eng.
,
32
(
7–8
), pp.
527
541
.
6.
Omidi
,
M.
,
Farhadi
,
M.
, and
Jafari
,
M.
,
2017
, “
A Comprehensive Review on Double Pipe Heat Exchangers
,”
Appl. Therm. Eng.
,
110
(
Suppl. C
), pp.
1075
1090
.
7.
Safaei
,
M. R.
,
Gooarzi
,
M.
,
Akbari
,
O. A.
,
Shadloo
,
M. S.
, and
Dahari
,
M.
,
2016
, “
Performance Evaluation of Nanofluids in an Inclined Ribbed Microchannel for Electronic Cooling Applications
,”
Electronics Cooling
,
InTech
, New York.
8.
Akbari
,
O. A.
,
Toghraie
,
D.
,
Karimipour
,
A.
,
Safaei
,
M. R.
,
Goodarzi
,
M.
,
Alipour
,
H.
, and
Dahari
,
M.
,
2016
, “
Investigation of Rib's Height Effect on Heat Transfer and Flow Parameters of Laminar Water–Al2O3 Nanofluid in a Rib-Microchannel
,”
Appl. Math. Comput.
,
290
(
Suppl. C
), pp.
135
153
.
9.
M'Hamed
,
B.
,
Sidik
,
N. A. C.
,
Yazid
,
M. N. A. W. M.
,
Mamat
,
R.
,
Najafi
,
G.
, and
Kefayati
,
G. H. R.
,
2016
, “
A Review on Why Researchers Apply External Magnetic Field on Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
78
(
Suppl. C
), pp.
60
67
.
10.
Tretheway
,
D. C.
, and
Meinhart
,
C. D.
,
2002
, “
Apparent Fluid Slip at Hydrophobic Microchannel Walls
,”
Phys. Fluids
,
14
(
3
), pp.
L9
L12
.
11.
Karimipour
,
A.
,
D'Orazio
,
A.
, and
Shadloo
,
M. S.
,
2017
, “
The Effects of Different Nano Particles of Al2O3 and Ag on the MHD Nano Fluid Flow and Heat Transfer in a Microchannel Including Slip Velocity and Temperature Jump
,”
Phys. E
,
86
, pp.
146
153
.
12.
Abbaszadeh
,
M.
,
Ababaei
,
A.
,
Arani
,
A. A. A.
, and
Sharifabadi
,
A. A.
,
2017
, “
MHD Forced Convection and Entropy Generation of CuO-Water Nanofluid in a Microchannel Considering Slip Velocity and Temperature Jump
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
3
), pp.
775
790
.
13.
Karimipour
,
A.
, and
Afrand
,
M.
,
2016
, “
Magnetic Field Effects on the Slip Velocity and Temperature Jump of Nanofluid Forced Convection in a Microchannel
,”
Proc. Inst. Mech. Eng., Part C
,
230
(
11
), pp.
1921
1936
.
14.
Aminossadati
,
S.
,
Raisi
,
A.
, and
Ghasemi
,
B.
,
2011
, “
Effects of Magnetic Field on Nanofluid Forced Convection in a Partially Heated Microchannel
,”
Int. J. Non-Linear Mech.
,
46
(
10
), pp.
1373
1382
.
15.
Morini
,
G. L.
,
2005
, “
Viscous Heating in Liquid Flows in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3637
3647
.
16.
Hung
,
Y. M.
,
2010
, “
Analytical Study on Forced Convection of Nanofluids With Viscous Dissipation in Microchannels
,”
Heat Transfer Eng.
,
31
(
14
), pp.
1184
1192
.
17.
Azad
,
A.
,
Rahman
,
M.
, and
Öztop
,
H. F.
,
2014
, “
Effects of Joule Heating on Magnetic Field Inside a Channel Along With a Cavity
,”
Procedia Eng.
,
90
, pp.
389
396
.
18.
Jamalabadi
,
M. A.
, and
Park
,
J. H.
,
2014
, “
Thermal Radiation, Joule Heating, and Viscous Dissipation Effects on MHD Forced Convection Flow With Uniform Surface Temperature
,”
Open J. Fluid Dyn.
,
4
(
2
), pp.
125
132
.
19.
Hamdan
,
M. A.
,
Al-Assaf
,
A. H.
, and
Al-Nimr
,
M. A.
,
2016
, “
The Effect of Slip Velocity and Temperature Jump on the Hydrodynamic and Thermal Behaviors of MHD Forced Convection Flows in Horizontal Microchannels
,”
Iran. J. Sci. Technol., Trans. Mech. Eng.
,
40
(
2
), pp.
95
103
.
20.
Mehrizi
,
A. A.
,
Farhadi
,
M.
,
Sedighi
,
K.
, and
Delavar
,
M. A.
,
2013
, “
Effect of Fin Position and Porosity on Heat Transfer Improvement in a Plate Porous Media Heat Exchanger
,”
J. Taiwan Inst. Chem. Eng.
,
44
(
3
), pp.
420
431
.
21.
Afrouz
,
H. H.
,
Sedighi
,
K.
,
Farhadi
,
M.
, and
Fattahi
,
E.
,
2012
, “
Dispersion and Deposition of Micro Particles Over Two Square Obstacles in a Channel Via Hybrid Lattice Boltzmann Method and Discrete Phase Model
,”
Int. J. Eng. Trans. B: Appl.
,
25
(3 (C)), pp. 257–266.
22.
Afrouzi
,
H. H.
,
Farhadi
,
M.
, and
Mehrizi
,
A. A.
,
2013
, “
Numerical Simulation of Microparticles Transport in a Concentric Annulus by Lattice Boltzmann Method
,”
Adv. Powder Technol.
,
24
(
3
), pp.
575
584
.
23.
Afrouzi
,
H. H.
,
Sedighi
,
K.
,
Farhadi
,
M.
, and
Moshfegh
,
A.
,
2015
, “
Lattice Boltzmann Analysis of Micro-Particles Transport in Pulsating Obstructed Channel Flow
,”
Comput. Math. Appl.
,
70
(
5
), pp.
1136
1151
.
24.
Pourmirzaagha
,
H.
,
Afrouzi
,
H. H.
, and
Mehrizi
,
A. A.
,
2015
, “
Nano-Particles Transport in a Concentric Annulus: A Lattice Boltzmann Approach
,”
J. Theor. Appl. Mech.
,
53
(
3
), pp.
683
695
.
25.
Mehrizi
,
A. A.
,
Farhadi
,
M.
,
Afroozi
,
H. H.
,
Sedighi
,
K.
, and
Darz
,
A. R.
,
2012
, “
Mixed Convection Heat Transfer in a Ventilated Cavity With Hot Obstacle: Effect of Nanofluid and Outlet Port Location
,”
Int. Commun. Heat Mass Transfer
,
39
(
7
), pp.
1000
1008
.
26.
Tilehboni
,
S. M.
,
Fattahi
,
E.
,
Afrouzi
,
H. H.
, and
Farhadi
,
M.
,
2015
, “
Numerical Simulation of Droplet Detachment From Solid Walls Under Gravity Force Using Lattice Boltzmann Method
,”
J. Mol. Liq.
,
212
, pp.
544
556
.
27.
Arumuga Perumal
,
D.
, and
Dass
,
A. K.
,
2015
, “
A Review on the Development of Lattice Boltzmann Computation of Macro Fluid Flows and Heat Transfer
,”
Alexandria Eng. J.
,
54
(
4
), pp.
955
971
.
28.
Karimipour
,
A.
,
Nezhad
,
A. H.
,
D'Orazio
,
A.
,
Esfe
,
M. H.
,
Safaei
,
M. R.
, and
Shirani
,
E.
,
2015
, “
Simulation of Copper–Water Nanofluid in a Microchannel in Slip Flow Regime Using the Lattice Boltzmann Method
,”
Eur. J. Mech.-B/Fluids
,
49
, pp.
89
99
.
29.
Xiang
,
X.
,
Wang
,
Z.
, and
Shi
,
B.
,
2012
, “
Modified Lattice Boltzmann Scheme for Nonlinear Convection Diffusion Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
6
), pp.
2415
2425
.
30.
Agarwal
,
R. K.
,
2003
, “
Lattice Boltzmann Simulations of Magnetohydrodynamic Slip Flow in Microchannels
,”
Bull. Am. Phys. Soc.
,
48
(
10
), p.
93
.
31.
Chatterjee
,
D.
, and
Amiroudine
,
S.
,
2011
, “
Lattice Boltzmann Simulation of Thermofluidic Transport Phenomena in a DC Magnetohydrodynamic (MHD) Micropump
,”
Biomed. Microdevices
,
13
(
1
), pp.
147
157
.
32.
Kalteh
,
M.
, and
Abedinzadeh
,
S. S.
, 2018, “
Numerical Investigation of MHD Nanofluid Forced Convection in a Microchannel Using Lattice Boltzmann Method
,”
Iran. J. Sci. Technol., Trans. Mech. Eng.
,
42
(1), pp.
23
34
.
33.
Kalteh
,
M.
, and
Hasani
,
H.
,
2014
, “
Lattice Boltzmann Simulation of Nanofluid Free Convection Heat Transfer in an L-Shaped Enclosure
,”
Superlattices Microstruct.
,
66
, pp.
112
128
.
34.
Meyer
,
J. P.
,
Adio
,
S. A.
,
Sharifpur
,
M.
, and
Nwosu
,
P. N.
,
2016
, “
The Viscosity of Nanofluids: A Review of the Theoretical, Empirical, and Numerical Models
,”
Heat Transfer Eng.
,
37
(
5
), pp.
387
421
.
35.
Patel
,
H. E.
,
Anoop
,
K.
,
Sundararajan
,
T.
, and
Das
,
S. K.
, 2006, “
A Micro-Convection Model for Thermal Conductivity of Nanofluids
,”
International Heat Transfer Conference 13
, Sydney, Australia, Aug. 13–18, pp. 863–869.
36.
Mohamad
,
A. A.
,
2011
,
Lattice Boltzmann Method: Fundamentals and Engineering Applications With Computer Codes
,
Springer Science & Business Media
, New York.
37.
Guo
,
Z.
,
Zheng
,
C.
, and
Shi
,
B.
,
2002
, “
Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method
,”
Phys. Rev. E
,
65
(
4
), p.
046308
.
38.
Bin
,
D.
,
Bao-Chang
,
S.
, and
Guang-Chao
,
W.
,
2005
, “
A New Lattice Bhatnagar–Gross–Krook Model for the Convection–Diffusion Equation With a Source Term
,”
Chin. Phys. Lett.
,
22
(
2
), p.
267
.
39.
White
,
F. M.
, and
Corfield
,
I.
,
2006
,
Viscous Fluid Flow
,
McGraw-Hill Higher Education
,
Boston, MA
.
40.
Wang
,
J.
,
Wang
,
M.
, and
Li
,
Z.
,
2007
, “
A Lattice Boltzmann Algorithm for Fluid–Solid Conjugate Heat Transfer
,”
Int. J. Thermal Sci.
,
46
(
3
), pp.
228
234
.
41.
Mohammed
,
H.
,
Bhaskaran
,
G.
,
Shuaib
,
N.
, and
Saidur
,
R.
,
2011
, “
Heat Transfer and Fluid Flow Characteristics in Microchannels Heat Exchanger Using Nanofluids: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1502
1512
.
42.
Zarita
,
R.
, and
Hachemi
,
M.
,
2014
, “
Microchannel Fluid Flow and Heat Transfer by Lattice Boltzmann Method
,” Fourth Micro and Nano Flows Conference, London, Sept. 7–10.
43.
Afshar
,
H.
,
Shams
,
M.
,
Nainian
,
S.
, and
Ahmadi
,
G.
,
2009
, “
Microchannel Heat Transfer and Dispersion of Nanoparticles in Slip Flow Regime With Constant Heat Flux
,”
Int. Commun. Heat Mass Transfer
,
36
(
10
), pp.
1060
1066
.
44.
Davaa
,
G.
,
Shigechi
,
T.
, and
Momoki
,
S.
,
2004
, “
Effect of Viscous Dissipation on Fully Developed Heat Transfer of Non-Newtonian Fluids in Plane Laminar Poiseuille-Couette Flow
,”
Int. Commun. Heat Mass Transfer
,
31
(
5
), pp.
663
672
.
45.
Manay
,
E.
, and
Sahin
,
B.
,
2017
, “
Heat Transfer and Pressure Drop of Nanofluids in a Microchannel Heat Sink
,”
Heat Transfer Eng.
,
38
(
5
), pp.
510
522
.
46.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
Wiley
, Hoboken, NJ.
47.
Kalteh
,
M.
,
2013
, “
Investigating the Effect of Various Nanoparticle and Base Liquid Types on the Nanofluids Heat and Fluid Flow in a Microchannel
,”
Appl. Math. Modell.
,
37
(
18–19
), pp.
8600
8609
.
You do not currently have access to this content.