Abstract

As nonbody-conforming numerical methods using simple Cartesian mesh, immersed boundary methods have become increasingly popular in modeling fluid–solid interaction. They usually do this by adding a body force term in the momentum equation. The magnitude and direction of this body force ensure that the boundary condition on the solid–fluid interface are satisfied without invoking complicated body-conforming numerical methods to impose the boundary condition. A similar path has been followed to model forced convection heat transfer by adding a source term in the energy equation. The added source term will ensure that thermal boundary conditions on the solid–fluid interface are imposed without invoking a boundary conforming mesh. These approaches were developed to handle the Dirichlet boundary condition (constant wall temperature). Few of them deal with the Neumann boundary condition (constant wall heat flux). This paper presents a simple new immersed boundary method. It can deal with the Dirichlet boundary condition, Neumann boundary condition, and conjugated heat transfer by adding an energy source or sink term in the energy conservation equation. The presented approach is validated against the analytical solutions and a very good match is achieved.

References

1.
Peskin
,
C. S.
,
1972
, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
,
10
(
2
), pp.
252
271
.10.1016/0021-9991(72)90065-4
2.
Mohd-Yusof
,
J.
,
1997
, “
Combined Immersed-Boundary/B-Spline Methods for Simulations of Flow in Complex Geometries
,”
Annual Research Briefs, Center for Turbulence Research
,
Stanford University
,
Stanford, CA
.
3.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
,
2000
, “
Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
(
1
), pp.
35
60
.10.1006/jcph.2000.6484
4.
Uhlmann
,
M.
,
2005
, “
An Immersed Boundary Method With Direct Forcing for the Simulation of Particulate Flows
,”
J. Comput. Phys.
,
209
(
2
), pp.
448
476
.10.1016/j.jcp.2005.03.017
5.
Kim
,
J.
,
Kim
,
D.
, and
Choi
,
H.
,
2001
, “
An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries
,”
J. Comput. Phys.
,
171
(
1
), pp.
132
150
.10.1006/jcph.2001.6778
6.
Balaras
,
E.
,
2004
, “
Modeling Complex Boundaries Using an External Force Field on Fixed Cartesian Grids in Large-Eddy Simulations
,”
Comput. Fluids
,
33
(
3
), pp.
375
404
.10.1016/S0045-7930(03)00058-6
7.
Liao
,
C. C.
,
Chang
,
Y. W.
,
Lin
,
C. A.
, and
McDonough
,
J. M.
,
2010
, “
Simulating Flows With Moving Rigid Boundary Using Immersed-Boundary Method
,”
Comput. Fluids
,
39
(
1
), pp.
152
167
.10.1016/j.compfluid.2009.07.011
8.
Huang
,
W. X.
, and
Sung
,
H. J.
,
2007
, “
Improvement of Mass Source/Sink for an Immersed Boundary Method
,”
Int. J. Numer. Methods Fluids
,
53
(
11
), pp.
1659
1671
.10.1002/fld.1367
9.
Yang
,
J.
, and
Balaras
,
E.
,
2006
, “
An Embedded-Boundary Formulation for Large-Eddy Simulation of Turbulent Flows Interacting With Moving Boundaries
,”
J. Comput. Phys.
,
215
(
1
), pp.
12
40
.10.1016/j.jcp.2005.10.035
10.
Grigoriadis
,
D. G. E.
,
Bartzis
,
J. G.
, and
Goulas
,
A.
,
2003
, “
LES of the Flow Past a Rectangular Cylinder Using the Immersed Boundary Concept
,”
Int. J. Numer. Methods Fluids
,
41
(
6
), pp.
615
632
.10.1002/fld.458
11.
Li
,
C. W.
, and
Wang
,
L. L.
,
2004
, “
An Immersed Boundary Finite Difference Method for LES of Flow Around Bluff Shapes
,”
Int. J. Numer. Methods Fluids
,
46
(
1
), pp.
85
107
.10.1002/fld.749
12.
Yang
,
J.
, and
Stern
,
F.
,
2015
, “
A Non-Iterative Direct Forcing Immersed Boundary Method for Strongly-Coupled Fluid-Solid Interactions
,”
J. Comput. Phys.
,
295
, pp.
779
804
.10.1016/j.jcp.2015.04.040
13.
Lee
,
J.
,
Kim
,
J.
,
Choi
,
H.
, and
Yang
,
K.-S.
,
2011
, “
Sources of Spurious Force Oscillations From an Immersed Boundary Method for Moving-Body Problems
,”
J. Comput. Phys.
,
230
(
7
), pp.
2677
2695
.10.1016/j.jcp.2011.01.004
14.
Gronskis
,
A.
, and
Artana
,
G.
,
2016
, “
A Simple and Efficient Direct Forcing Immersed Boundary Method Combined With a High Order Compact Scheme for Simulating Flows With Moving Rigid Boundaries
,”
Comput. Fluids
,
124
, pp.
86
104
.10.1016/j.compfluid.2015.10.016
15.
Liu
,
C.
, and
Hu
,
C.
,
2014
, “
An Efficient Immersed Boundary Treatment for Complex Moving Object
,”
J. Comput. Phys.
,
274
, pp.
654
680
.10.1016/j.jcp.2014.06.042
16.
Yang
,
J.
, and
Stern
,
F.
,
2012
, “
A Simple and Efficient Direct Forcing Immersed Boundary Framework for Fluid-Structure Interactions
,”
J. Comput. Phys.
,
231
(
15
), pp.
5029
5061
.10.1016/j.jcp.2012.04.012
17.
Kajishima
,
T.
,
Takiguchi
,
S.
,
Hamasaki
,
H.
, and
Miyake
,
Y.
,
2001
, “
Turbulence Structure of Particle-Laden Flow in a Vertical Plane Channel Due to Vortex Shedding
,”
JSME Int. J., Ser. B
,
44
(
4
), pp.
526
535
.10.1299/jsmeb.44.526
18.
Kajishima
,
T.
, and
Takiguchi
,
S.
,
2002
, “
Interaction Between Particle Clusters and Particle-Induced Turbulence
,”
Int. J. Heat Fluid Flow
,
23
(
5
), pp.
639
646
.10.1016/S0142-727X(02)00159-5
19.
Ravoux
,
J. F.
,
Nadim
,
A.
, and
Haj-Hariri
,
H.
,
2003
, “
An Embedding Method for Bluff Body Flows: Interactions of Two Side-by-Side Cylinder Wakes
,”
Theor. Comput. Fluid Dyn.
,
16
(
6
), pp.
433
466
.10.1007/s00162-003-0090-4
20.
Nakayama
,
Y.
, and
Yamamoto
,
R.
,
2005
, “
Simulation Method to Resolve Hydrodynamic Interactions in Colloidal Dispersions
,”
Phys. Rev. E
,
71
(
3
), p.
036707
.10.1103/PhysRevE.71.036707
21.
Takiguchi
,
S.
,
Kajishima
,
T.
, and
Miyake
,
Y.
,
1999
, “
Numerical Scheme to Resolve the Interaction Between Solid Particles and Fluid Turbulence
,”
JSME Int. J., Ser. B
,
42
(
3
), pp.
411
418
.10.1299/jsmeb.42.411
22.
Sugiyama
,
K.
,
Ii
,
S.
,
Takeuchi
,
S.
,
Takagi
,
S.
, and
Matsumoto
,
Y.
,
2011
, “
A Full Eulerian Finite Difference Approach for Solving Fluid-Structure Coupling Problem
,”
J. Comput. Phys.
,
230
(
3
), pp.
596
627
.10.1016/j.jcp.2010.09.032
23.
Bigot
,
B.
,
Bonometti
,
T.
,
Lacaze
,
L.
, and
Thual
,
O.
,
2014
, “
A Simple Immersed-Boundary Method for Solid-Fluid Interaction in Constant- and Stratified-Density Flows
,”
Comput. Fluids
,
97
, pp.
126
142
.10.1016/j.compfluid.2014.03.030
24.
Yuki
,
Y.
,
Takeuchi
,
S.
, and
Kajishima
,
T.
,
2007
, “
Efficient Immersed Boundary Method for Strong Interaction Problem of Arbitrary Shape Object With the Self-Induced Flow
,”
J. Fluid Sci. Technol.
,
2
(
1
), pp.
1
11
.10.1299/jfst.2.1
25.
Tuanya
,
T. M. Y. S.
,
Takeuchi
,
S.
,
Kajishima
,
T.
, and
Ueyama
,
A.
,
2009
, “
Immersed Boundary Method (Body Force) for Flow Around Thin Bodies With Sharp Edges
,”
Int. J. Mech. Mater. Eng.
,
4
(
1
), pp.
98
102
.https://www.semanticscholar.org/paper/TECHNICAL-NOTE%3A-IMMERSED-BOUNDARY-METHOD-(BODY-FOR-Tuanya-Takeuchi/4de43d516b1b9fe531e5a132e1b2f193a0450d0e
26.
Lin
,
S.-Y.
,
Chin
,
Y.-H.
,
Hu
,
J.-J.
, and
Chen
,
Y.-C.
,
2011
, “
A Pressure Correction Method for Fluid-Particle Interaction Flow: Direct-Forcing Method and Sedimentation Flow
,”
Int. J. Numer. Methods Fluids
,
67
(
12
), pp.
1771
1798
.10.1002/fld.2442
27.
Zaidi
,
A. A.
,
Tsuji
,
T.
, and
Tanaka
,
T.
,
2014
, “
Direct Numerical Simulation of Finite Sized Particles Settling for High Reynolds Number and Dilute Suspension
,”
Int. J. Heat Fluid Flow
,
50
, pp.
330
341
.10.1016/j.ijheatfluidflow.2014.09.007
28.
Roma
,
A. M.
,
Peskin
,
C. S.
, and
Berger
,
M. J.
,
1999
, “
An Adaptive Version of the Immersed Boundary Method
,”
J. Comput. Phys.
,
153
(
2
), pp.
509
534
.10.1006/jcph.1999.6293
29.
Breugem
,
W.-P.
,
2012
, “
A Second-Order Accurate Immersed Boundary Method for Fully Resolved Simulations of Particle-Laden Flows
,”
J. Comput. Phys.
,
231
(
13
), pp.
4469
4498
.10.1016/j.jcp.2012.02.026
30.
Ren
,
W. W.
,
Shu
,
C.
,
Wu
,
J.
, and
Yang
,
W. M.
,
2012
, “
Boundary Condition-Enforced Immersed Boundary Method for Thermal Flow Problems With Dirichlet Temperature Condition and Its Applications
,”
Comput. Fluids
,
57
, pp.
40
51
.10.1016/j.compfluid.2011.12.006
31.
Kempe
,
T.
, and
Fröhlich
,
J.
,
2012
, “
An Improved Immersed Boundary Method With Direct Forcing for the Simulation of Particle Laden Flows
,”
J. Comput. Phys.
,
231
(
9
), pp.
3663
3684
.10.1016/j.jcp.2012.01.021
32.
Su
,
S. W.
,
Lai
,
M. C.
, and
Lin
,
C. A.
,
2007
, “
An Immersed Boundary Technique for Simulating Complex Flows With Rigid Boundary
,”
Comput. Fluids
,
36
(
2
), pp.
313
324
.10.1016/j.compfluid.2005.09.004
33.
Lai
,
M. C.
, and
Peskin
,
C. S.
,
2000
, “
An Immersed Boundary Method With Formal Second-Order Accuracy and Reduced Numerical Viscosity
,”
J. Comput. Phys.
,
160
(
2
), pp.
705
719
.10.1006/jcph.2000.6483
34.
Zhang
,
N.
, and
Zheng
,
Z. C.
,
2007
, “
An Improved Direct-Forcing Immersed-Boundary Method for Finite Difference Applications
,”
J. Comput. Phys.
,
221
(
1
), pp.
250
268
.10.1016/j.jcp.2006.06.012
35.
Revstedt
,
J.
,
2004
, “
A Virtual Boundary Method With Improved Computational Efficiency Using a Multi-Grid Method
,”
Int. J. Numer. Methods Fluids
,
45
(
7
), pp.
775
795
.10.1002/fld.710
36.
Lima
,
A. L. F.
,
Silva
,
E.
,
Silveira-Neto
,
A.
, and
Damasceno
,
J. J. R.
,
2003
, “
Numerical Simulation of Two-Dimensional Flows Over a Circular Cylinder Using the Immersed Boundary Method
,”
J. Comput. Phys.
,
189
(
2
), pp.
351
370
.10.1016/S0021-9991(03)00214-6
37.
Vanella
,
M.
, and
Balaras
,
E.
,
2009
, “
A Moving-Least-Squares Reconstruction for Embedded-Boundary Formulations
,”
J. Comput. Phys.
,
228
(
18
), pp.
6617
6628
.10.1016/j.jcp.2009.06.003
38.
Höfler
,
K.
, and
Schwarzer
,
S.
,
2000
, “
Navier-Stokes Simulation With Constraint Forces: Finite-Difference Method for Particle-Laden Flows and Complex Geometries
,”
Phys. Rev. E
,
61
(
6
), pp.
7146
7160
.10.1103/PhysRevE.61.7146
39.
Ji
,
C.
,
Munjiza
,
A.
, and
Williams
,
J. J. R.
,
2012
, “
A Novel Iterative Direct-Forcing Immersed Boundary Method and Its Finite Volume Applications
,”
J. Comput. Phys.
,
231
(
4
), pp.
1797
1821
.10.1016/j.jcp.2011.11.010
40.
Lācis
,
U.
,
Taira
,
K.
, and
Bagheri
,
S.
,
2016
, “
A Stable Fluid-Structure-Interaction Solver for Low-Density Rigid Bodies Using the Immersed Boundary Projection Method
,”
J. Comput. Phys.
,
305
, pp.
300
318
.10.1016/j.jcp.2015.10.041
41.
Park
,
H.
,
Pan
,
X.
,
Lee
,
C.
, and
Choi
,
J.
,
2016
, “
A Pre-Conditioned Implicit Direct Forcing Based Immersed Boundary Method for Incompressible Viscous Flows
,”
J. Comput. Phys.
,
314
, pp.
774
799
.10.1016/j.jcp.2016.03.035
42.
Peskin
,
C. S.
,
1977
, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
,
25
(
3
), pp.
220
252
.10.1016/0021-9991(77)90100-0
43.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
,
1993
, “
Modeling a No-Slip Flow Boundary With an External Force Field
,”
J. Comput. Phys.
,
105
(
2
), pp.
354
366
.10.1006/jcph.1993.1081
44.
Saiki
,
E. M.
, and
Biringen
,
S.
,
1996
, “
Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual Boundary Method
,”
J. Comput. Phys.
,
123
(
2
), pp.
450
465
.10.1006/jcph.1996.0036
45.
Taira
,
K.
, and
Colonius
,
T.
,
2007
, “
The Immersed Boundary Method: A Projection Approach
,”
J. Comput. Phys.
,
225
(
2
), pp.
2118
2137
.10.1016/j.jcp.2007.03.005
46.
Luo
,
H.
,
Dai
,
H.
,
Ferreira de Sousa
,
P.
, and
Yin
,
B.
,
2012
, “
On the Numerical Oscillation of the Direct-Forcing Immersed-Boundary Method for Moving Boundaries
,”
Comput. Fluids
,
56
, pp.
61
76
.10.1016/j.compfluid.2011.11.015
47.
Ikeno
,
T.
, and
Kajishima
,
T.
,
2007
, “
Finite-Difference Immersed Boundary Method Consistent With Wall Conditions for Incompressible Turbulent Flow Simulations
,”
J. Comput. Phys.
,
226
(
2
), pp.
1485
1508
.10.1016/j.jcp.2007.05.028
48.
Tseng
,
Y.-H.
, and
Ferziger
,
J. H.
,
2003
, “
A Ghost-Cell Immersed Boundary Method for Flow in Complex Geometry
,”
J. Comput. Phys.
,
192
(
2
), pp.
593
623
.10.1016/j.jcp.2003.07.024
49.
Yokoi
,
K.
,
Xiao
,
F.
,
Liu
,
H.
, and
Fukasaku
,
K.
,
2005
, “
Three-Dimensional Numerical Simulation of Flows With Complex Geometries in a Regular Cartesian Grid and Its Application to Blood Flow in Cerebral Artery With Multiple Aneurysms
,”
J. Comput. Phys.
,
202
(
1
), pp.
1
19
.10.1016/j.jcp.2004.06.018
50.
Choi
,
J.
,
Oberoi
,
R. C.
,
Edwards
,
J. R.
, and
Rosati
,
J. A.
,
2007
, “
An Immersed Boundary Method for Complex Incompressible Flows
,”
J. Comput. Phys.
,
224
(
2
), pp.
757
784
.10.1016/j.jcp.2006.10.032
51.
Peller
,
N.
,
Duc
,
A. L.
,
Tremblay
,
F.
, and
Manhart
,
M.
,
2006
, “
High-Order Stable Interpolations for Immersed Boundary Methods
,”
Int. J. Numer. Meth. Fluids
,
52
(
11
), pp.
1175
1193
.10.1002/fld.1227
52.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F. M.
,
Vargas
,
A.
, and
von Loebbecke
,
A.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.10.1016/j.jcp.2008.01.028
53.
Gilmanov
,
A.
,
Sotiropoulos
,
F.
, and
Balaras
,
E.
,
2003
, “
A General Reconstruction Algorithm for Simulating Flows With Complex 3D Immersed Boundaries on Cartesian Grids
,”
J. Comput. Phys.
,
191
(
2
), pp.
660
669
.10.1016/S0021-9991(03)00321-8
54.
Lee
,
J.
, and
You
,
D.
,
2013
, “
An Implicit Ghost-Cell Immersed Boundary Method for Simulations of Moving Body Problems With Control of Spurious Force Oscillations
,”
J. Comput. Phys.
,
233
, pp.
295
314
.10.1016/j.jcp.2012.08.044
55.
Seo
,
J. H.
, and
Mittal
,
R.
,
2011
, “
A Sharp-Interface Immersed Boundary Method With Improved Mass Conservation and Reduced Spurious Pressure Oscillations
,”
J. Comput. Phys.
,
230
(
19
), pp.
7347
7363
.10.1016/j.jcp.2011.06.003
56.
Huang
,
C. J.
,
Lin
,
C. Y.
, and
Chen
,
C. H.
,
2015
, “
Numerical Simulations of Fluid-Structure Interaction Based on Cartesian Grids With Two Boundary Velocities
,”
Int. J. Numer. Methods Fluids
,
79
(
3
), pp.
138
161
.10.1002/fld.4046
57.
Kumar
,
M.
,
Roy
,
S.
, and
Ali
,
M. S.
,
2016
, “
An Efficient Immersed Boundary Algorithm for Simulation of Flows in Curved and Moving Geometries
,”
Comput. Fluids
,
129
, pp.
159
178
.10.1016/j.compfluid.2016.02.009
58.
Yao
,
G.
,
2018
,
Immersed Boundary Method for CFD
, 2nd ed., CreateSpace Independent Publishing Platform, SC
.
59.
Kim
,
J.
, and
Choi
,
H.
,
2004
, “
An Immersed-Boundary Finite-Volume Method for Simulation of Heat Transfer in Complex Geometries
,”
KSME Int. J.
,
18
(
6
), pp.
1026
1035
.10.1007/BF02990875
60.
Wang
,
Z.
,
Fan
,
J.
,
Luo
,
K.
, and
Cen
,
K.
,
2009
, “
Immersed Boundary Method for the Simulation of Flows With Heat Transfer
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4510
4518
.10.1016/j.ijheatmasstransfer.2009.03.048
61.
Tavassoli
,
H.
,
Kriebitzsch
,
S. H. L.
,
van der Hoef
,
M. A.
,
Peters
,
E. A. J. F.
, and
Kuipers
,
J. A. M.
,
2013
, “
Direct Numerical Simulation of Particulate Flow With Heat Transfer
,”
Int. J. Multiph. Flow
,
57
, pp.
29
37
.10.1016/j.ijmultiphaseflow.2013.06.009
62.
Ahn
,
J.
, and
Lee
,
J. S.
,
2010
, “
Large Eddy Simulation of Flow and Heat Transfer in a Channel With a Detached Rib Array
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
445
452
.10.1016/j.ijheatmasstransfer.2009.09.012
63.
Ahn
,
J.
,
Choi
,
H.
, and
Lee
,
J. S.
,
2007
, “
Large Eddy Simulation of Flow and Heat Transfer in a Rotating Ribbed Channel
,”
Int. J. Heat Mass Transfer
,
50
(
25–26
), pp.
4937
4947
.10.1016/j.ijheatmasstransfer.2007.03.049
64.
Ashrafizadeh
,
A.
, and
Hosseinjani
,
A. A.
,
2017
, “
A Phenomenological Study on the Convection Heat Transfer Around Two Enclosed Rotating Cylinders Via an Immersed Boundary Method
,”
Int. J. Heat Mass Transfer
,
107
, pp.
667
685
.10.1016/j.ijheatmasstransfer.2016.11.078
65.
Ge
,
M. Y.
,
Chua
,
K. J.
,
Shu
,
C.
, and
Yang
,
W. M.
,
2015
, “
Analytical and Numerical Study of Tissue Cryofreezing Via the Immersed Boundary Method
,”
Int. J. Heat Mass Transfer
,
83
, pp.
1
10
.10.1016/j.ijheatmasstransfer.2014.11.077
66.
Liao
,
C. C.
, and
Lin
,
C. A.
,
2012
, “
Influences of a Confined Elliptic Cylinder at Different Aspect Ratios and Inclinations on the Laminar Natural and Mixed Convection Flows
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6638
6650
.10.1016/j.ijheatmasstransfer.2012.06.073
67.
Gulberg
,
Y.
, and
Feldman
,
Y.
,
2015
, “
On Laminar Natural Convection Inside Multi-Layered Spherical Shells
,”
Int. J. Heat Mass Transfer
,
91
, pp.
908
921
.10.1016/j.ijheatmasstransfer.2015.07.032
68.
Lee
,
S. H.
,
Seo
,
Y. M.
,
Yoon
,
H. S.
, and
Ha
,
M. Y.
,
2016
, “
Three-Dimensional Natural Convection Around an Inner Circular Cylinder Located in a Cubic Enclosure With Sinusoidal Thermal Boundary Condition
,”
Int. J. Heat Mass Transfer
,
101
, pp.
807
823
.10.1016/j.ijheatmasstransfer.2016.05.079
69.
Seo
,
Y. M.
,
Doo
,
J. H.
, and
Ha
,
M. Y.
,
2016
, “
Three-Dimensional Flow Instability of Natural Convection Induced by Variation in Radius of Inner Circular Cylinder Inside Cubic Enclosure
,”
Int. J. Heat Mass Transfer
,
95
, pp.
566
578
.10.1016/j.ijheatmasstransfer.2015.12.044
70.
Nagendra
,
K.
,
Tafti
,
D. K.
, and
Viswanath
,
K.
,
2014
, “
A New Approach for Conjugate Heat Transfer Problems Using Immersed Boundary Method for Curvilinear Grid Based Solvers
,”
J. Comput. Phys.
,
267
, pp.
225
246
.10.1016/j.jcp.2014.02.045
71.
Iaccarino
,
G.
,
Ooi
,
A.
,
Durbin
,
P. A.
, and
Behnia
,
M.
,
2002
, “
Conjugate Heat Transfer Predictions in Two-Dimensional Ribbed Passages
,”
Int. J. Heat Fluid Flow
,
23
(
3
), pp.
340
345
.10.1016/S0142-727X(02)00181-9
72.
Kang
,
S.
,
Iaccarino
,
G.
, and
Ham
,
F.
,
2009
, “
DNS of Buoyancy-Dominated Turbulent Flows on a Bluff Body Using the Immersed Boundary Method
,”
J. Comput. Phys.
,
228
(
9
), pp.
3189
3208
.10.1016/j.jcp.2008.12.037
73.
Pacheco
,
J. R.
,
Pacheco-Vega
,
A.
,
Rodić
,
T.
, and
Peck
,
R. E.
,
2005
, “
Numerical Simulations of Heat Transfer and Fluid Flow Problems Using an Immersed-Boundary Finite-Volume Method on Nonstaggered Grids
,”
Numer. Heat Transfer, Part B
,
48
(
1
), pp.
1
24
.10.1080/10407790590935975
74.
Pacheco-Vega
,
A.
,
Pacheco
,
J. R.
, and
Rodić
,
T.
,
2007
, “
A General Scheme for the Boundary Conditions in Convective and Diffusive Heat Transfer With Immersed Boundary Methods
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1506
1516
.10.1115/1.2764083
75.
Xia
,
J.
,
Luo
,
K.
, and
Fan
,
J.
,
2014
, “
A Ghost-Cell Based High-Order Immersed Boundary Method for Inter-Phase Heat Transfer Simulation
,”
Int. J. Heat Mass Transfer
,
75
, pp.
302
312
.10.1016/j.ijheatmasstransfer.2014.03.048
76.
Pan
,
D.
,
2010
, “
A Simple and Accurate Ghost Cell Method for the Computation of Incompressible Flows Over Immersed Bodies With Heat Transfer
,”
Numer. Heat Transfer, Part B
,
58
(
1
), pp.
17
39
.10.1080/10407790.2010.504697
77.
Ren
,
W.
,
Shu
,
C.
, and
Yang
,
W.
,
2013
, “
An Efficient Immersed Boundary Method for Thermal Flow Problems With Heat Flux Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
64
, pp.
694
705
.10.1016/j.ijheatmasstransfer.2013.05.020
78.
Lupo
,
G.
,
Ardekani
,
M. N.
,
Brandt
,
L.
, and
Duwig
,
C.
,
2019
, “
An Immersed Boundary Method for Flows With Evaporating Droplets
,”
Int. J. Heat Mass Transfer
,
143
, p.
118563
.10.1016/j.ijheatmasstransfer.2019.118563
79.
Tao
,
S.
,
He
,
Q.
,
Wang
,
L.
,
Huang
,
S.
, and
Chen
,
B.
,
2019
, “
A Non-Iterative Direct-Forcing Immersed Boundary Method for Thermal Discrete Unified Gas Kinetic Scheme With Dirichlet Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
137
, pp.
476
488
.10.1016/j.ijheatmasstransfer.2019.03.147
80.
Lapka
,
P.
, and
Furmanski
,
P.
,
2017
, “
Immersed Boundary Methods for Radiative Heat Transfer Problems in Nongray Media With Complex Internal and External Boundaries
,”
ASME J. Heat Transfer
,
139
, p.
022702
.10.1115/1.4034772
81.
Yousefzadeh
,
M.
, and
Battiato
,
I.
,
2019
, “
High Order Ghost-Cell Immersed Boundary Method for Generalized Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
137
, pp.
585
598
.10.1016/j.ijheatmasstransfer.2019.03.061
82.
Fujii
,
G.
, and
Akimoto
,
Y.
,
2019
, “
Topology-Optimized Thermal Carpet Cloak Expressed by an Immersed-Boundary Level-Set Method Via a Covariance Matrix Adaptation Evolution Strategy
,”
Int. J. Heat Mass Transfer
,
137
, pp.
1312
1322
.10.1016/j.ijheatmasstransfer.2019.03.162
83.
Armfield
,
S. W.
, and
Street
,
R.
,
2003
, “
The Pressure Accuracy of Fractional-Step Methods for the Navier-Stokes Equations on Staggered Grids
,”
ANZIAM J.
,
44
, pp. C
20
C39
.10.21914/anziamj.v44i0.670
84.
Yao
,
G.
,
2018
, “
A New Immersed Boundary Method With Level Set Based Geometry Representation and Volume Fraction Based Body Force Calculation
,”
ASME Paper No. FEDSM2018/83011
.10.1115/FEDSM2018-83011
85.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2001
,
Computational Methods for Fluid Dynamics
, 3rd ed.,
Springer
,
New York
.
86.
Sethian
,
J.
,
1999
,
Level Set Methods and Fast Marching Methods
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
87.
Osher
,
S.
, and
Fedkiw
,
R.
,
2002
,
Level Set Methods and Dynamic Implicit Surfaces
,
Springer
,
Berlin
.
88.
Mauch
,
S.
,
2000
, “
A Fast Algorithm for Computing the Closest Point and Distance Transform
,”
California Institute of Technology
,
Pasadena, CA
, Report No. 077.
89.
Mauch
,
S.
,
2003
, “
Efficient Algorithms for Solving Static Hamilton-Jacobi Equations
,”
Ph.D. thesis
,
California Institute of Technology
,
Pasadena, CA
. https://thesis.library.caltech.edu/1888/1/thesis.pdf
90.
Currie
,
I. G.
,
1993
,
Fundamental Mechanics of Fluids
, 2nd ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.